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Outline

O Introduction:
photon puzzle and photon production in glasma

O Electromagnetic current:
an important building block to compute photon spectra

0 EM current in uniform color electric fields

* Abelianization
e SU(2) vs. SU(3)
* Color direction dependence

0 Inhomogeneous color fields



Photon puzzle

Direct photon excess Large photon v2
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Hydrodynamic models fail to describe simultaneously photon yield, temperature and v2.

Geometrical scaling
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Quark production in glasma

Glasma gauge fields produce quarks

¥

Quarks are accelerated or kicked by the gauge fields

¥

Chemical and thermal equilibration?

can be computed by real-time lattice simulations

with the classical(-statistical) approximation of gauge fields
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Glasma flux tubes

N.T. and Gelis, in progress
Kasper, Hebenstreit and Berges (2014)
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Photon production in glasma

Glasma gauge fields produce quarks (\
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Quarks are accelerated or kicked by the gauge fields %
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Glasma flux tubes

During these processes, quarks can emit photons. >:§ /i

radiation annihilation

Can we see glasma by photons?




Photon production formula

In thermal eqU”ibrium, McLerran and Toimela (85),

Weldon (90), Gale and Kapsta(91)
dR ghv

o = s | T O )

W Own

One of characteristic features of a non-equilibrium state is nonzero current expectation.
(Ju(2)) = e((x)y1(x)) # 0

Gives the same order contribution in (¢ as the connected one-loop

Extension to non-equilibrium....
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Abelianization of color fields

G.C.Nayak (2005)

FS’V(J}) = ij(;c)na — Az(m) — Aﬂ(aj)na N.T. (2010)

constant vector in color space

Diagonalize n®T

Dy = 0, +igAun* T 0 — [0, + igdy ("o )] (1)

[U(l) theory with effective coupling W.g




Abelianization of color fields

G.C.Nayak (2005)

FS’V(J}) = ij(;c)na — Az(m) — Aﬂ(aj)na N.T. (2010)

constant vector in color space

Diagonalize n®T

Dy = 0, +igAun* T 0 — [0, + igdy ("o )] (1)

[U(l) theory with effective coupling W.g

0 An important difference between SU(2) and SU(3)

SU(2)isrank 1: [UtpoeTey = T3

SU(3)isrank2: UTneTeU = T3 cost — T8 sin b
AN

color direction parameter




Abelianization of SU(3) fields

UneTeU = T3 cos — T®sinf =

Relation between 6 and n“

sin® 30 = 3(d***n*n’n®)?

gauge invariant quantity (Casimir invariant)
characterizing the color direction

rotated weight diagram

The color direction can be parametrized in a gauge-invariant way.

¥

Physical observables can depend on it.



Quark production in SU(2) uniform electric fields

D= 0, +isa T — [ +inn, (77,)] (5)

The diagonalized effective couplings are always 1/2 and -1/2.

Uniform and constant electric field £ = Eyn”

strong field classical limit gEy = const, g — (0  no gause field fluctuations
no backreaction

color 1 color 2

F-“q m/\/gEy = 0.1

0.4
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anti-particle is given

=2 0 2
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The distribution functions of produced quarks by p << —p
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Cancellation of EM current in SU(2) fields
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The contributions from color 1 and 2 are cancelled out.
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[In the case of the Schwinger mechanism,
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Quark production in SU(3) uniform electric fields

. . . N.T. (2010
Uniform and constant electric field £ = Eon“ (2010)
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Non-cancellation of EM current in SU(3) fields
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Inhomogeneous color electric fields: SU(2)
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Inhomogeneous color electric fields: SU(3)
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Summary and Outlook

» Investigated EM currents induced by color fields as a first step to study
photon production in glasma.

» In SU(2) uniform fields, EM currents are not at all induced because of the
cancellation between two color components.

» In SU(3) uniform fields, the cancellation is not perfect. The EM currents exist
depending on the color direction of the background field.

» In inhomogeneous color fields, SU(2) and SU(3) give quantitatively different
results.

O Quark production in glasma
O Effects of gauge field fluctuations and backreaction
O Photon production



