Spintracking of e-lens lattice
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Overview of Resonances on RHIC
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What is Special about e-lens
lattices?

 Understood Differences from Standard lattice:

e Main 3 intrinsic Resonances weaker in both lattices
- Blue weakest then Yellow

« Some Secondary Resonances larger:
— About x10 larger up to 0.1 in strength

* The overlap of these secondary resonances can
cause problems:

- Although when considered individually they are weak
enough that the snakes should easily handle them

- However when they overlap with a the strong main

resonances we can see depolarization via Parametric
resonance



First Test of modified Intrinsic
resonance in RHIC
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Reduced Resonances by 10 to 14%

411-NU -0.06134 -0.0655




Blue e-lens strength at 15 pi mm-
mrad normal acceleration rate

Polarization Response to Phase

Pf/Pi

Delta Phase between strong and weak resonance (radians)



Why is Phase an issue?

If you look at the BMT equation for two resonance crossings without snakes you can get
an idea of why. Using a parametric transformation you can reduce things to a Hills' like

equation:
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Introducing the above transformations will eliminate the 1% order part of the differential
Equation and get us to a Hill's like equation.
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Expansion of Hills Kernel

For the two resonance case the 1/xi terms are what give us the most problem we proceed to
expand them assuming there is a dominant and weaker resonance we expand using the
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Multiplying this expansion out and keeping only first order epsilon terms we get:
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With the constant C1-C5 terms defined below and the frequency in terms of difference between
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Parametric Resonance
Approximation

Following the work done by by Richard Rand and others [1,2], It can be shown that the
oscillating pieces only contribute significantly in a parametric resonance tongue region:

Wg ~ —02%/4
In this region qO0 becomes:
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The g1 equations generate secular terms which can be now canceled using A() and B() for
Which we get two coupled first order differential equations which can be solved:
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Putting A and B back into q0 gives a decent approximation valid over the resonance tongue
Region; which is plus or minus the |Ca| the maximum amplitude of C3 or C5. We get growing
Or damping solution when square root of epsilon zero is real which occurs when phase= PI/2.
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6D Tracking Results crossing
393+NU resonance

Emnittance bin Plmm-mnrad



How did we do?

Blue FY12 42.7% £ 0.8%  0.7805+- 0.0089 0.3129

Yellow FY12 50.0% £ 0.9%  0.8469+- 0.0105 0.2452

Yellow FY12 55.1%% 0.4% 0.8834+- 0.006  0.1403

* Jet Number Courtesy H. Huang ** CNI Ramp Eff. Courtesy D. Smirnov



Predictions for e-lens lattice
based on Integrating over different
emittances

Yellow e-lens 0.96 0.892 0.745

Question why FY12 lattice seemed to under perform tracking expectations by
About 10%.
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