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ATF Experiment AE35
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Objectives

• To modify the plasma density profile and examine the 
effects of sharp density gradients on the acceleration of ion 
from gaseous targets as part of the CO2 laser ion 
acceleration experiment (AE35).
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Introduction
• Most laser ion acceleration schemes require critical density plasma and use 

solid targets that are single shot and hard to make 
• Gas jet provides infinite supply of targets but plasma density can be too low
• CO2 laser can reach critical plasma densities in gas jets.
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Shock Wave Ion Acceleration
• Ions can be accelerated by shock wave generated by CO2 laser in plasma
• Double CO2 laser pulses are used, one to form shock, the other to accelerate 

shock 
• Not an efficient way of using the CO2 laser energy
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Benefits of a Preformed Plasma Density Profile

• Sharp front gradient reduce ionization defocusing generating 
smaller laser spot size

• Better laser plasma coupling as sharp gradient simulates solid 
target conditions

• Sharp rear gradient generates well defined charge separation in 
TNSA type situations

• Sub-critical or above-critical plasma densities can be generated 
for various ion accelerating laser wavelengths

• Various plasma density profiles can be generated by adjusting 
timing of the hydrodynamic shock and the gas jet geometry
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Near Critical Plasma from Gas Jets

• Start with supersonic gas jet 

• Ignition pulse drives 
hydrodynamic shock

• Shock wave produces large 
density gradients (~50 μm)

• Local density enhancement 
of           times ambient 1

1

D. Kaganovich, M. H. Helle, D. F. Gordon, and A. Ting, “Measurements of colliding shock wave and supersonic gas 
flow,” Appl. Phys. Lett. 97, 191501 (2010)
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Hydrodynamic Shock Generation and 
Experiment at NRL

Experimental Parameters
Drive Laser :
 = 800 nm
E = 500 mJ
τ = 50 fs
f# = 2 (OAP)
r0 = 2.6 um
I = 1.0*1020 W/cm2 (a0 ~ 6)

Gas Jet:
Diameter = 1 mm
Pressure = 100-1200 PSI

Plasma Diagnostics:
Schlieren Shadowgraphy
Interferometry

Gas Jet

Collimator/
CR-39

To Spectrometer

OAP

Focal Spot

5 μm
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Measurement of Hydrodynamic Shock Density

10
D. Kaganovich, D.F. Gordon, M.H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves”, 
J. Appl. Phys. 116, 013304(2014)
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3D SPARC Simulations of Shock Wave in Gas Jet

Linear scale Logarithmic scale

D. Kaganovich, M. H. Helle, D. F. Gordon, and A. Ting, “Measurements of colliding shock wave and supersonic gas 
flow,” Appl. Phys. Lett. 97, 191501 (2010)

SPARC (Streamer Propagation and ARCing) code
• Fully nonlinear gas dynamics, including viscosity and heat conduction
• Arbitrarily shaped walls around/within flow region
• Multi-temperature chemical kinetics

11
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D. Kaganovich, D.F. Gordon, M.H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves”, 
J. Appl. Phys. 116, 013304(2014)

3D SPARC Simulations of Shock Wave in Gas Jet
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Comparison of Simulation and Experiment
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D. Kaganovich, D.F. Gordon, M.H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves”, 
J. Appl. Phys. 116, 013304(2014)
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NRL Experiment of Laser Accelerated Protons

M.H. Helle, DD.F. Gordon, . Kaganovich, A. Zingale and A. Ting, “Accelerated Protons from Near Critical Density Gaseous 
Targets”, submitted to 2014 AAC Workshop Proceedings (2014)
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Hydrodynamic Shocks for Ion Acceleration
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Gas Jet

Single Shock

Shock Front

Laser Spot

Laser 70μm

Gas Jet

Colliding Shocks

Shock Fronts

Laser
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Accelerated Protons

• Low energy protons extending beyond laser spot
• Energetic protons between 1.5-1.9 MeV contained within laser cone 
• Pit counting underway to extract beam characteristics 
• Scanning parameter space for efficient acceleration
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M.H. Helle, DD.F. Gordon, . Kaganovich, A. Zingale and A. Ting, “Accelerated Protons from Near Critical Density Gaseous 
Targets”, submitted to 2014 AAC Workshop Proceedings (2014)
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Simulated Interaction

Experimental density 
profile (peak at 0.34 nc) 
used as input in 
TurboWAVE PIC Code

Drive Pulse Parameters:
λ = 800 nm
τ = 50 fs
r0 = 3 um
a0 = 4
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Simulated Accelerated Protons

Proton energy peaked at 2 MeVProton Density
(Exit end of plasma region)

M.H. Helle, DD.F. Gordon, . Kaganovich, A. Zingale and A. Ting, “Accelerated Protons from Near Critical Density Gaseous 
Targets”, submitted to 2014 AAC Workshop Proceedings (2014)
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CO2 Laser Ion Acceleration Simulation

Laser Energy= 1 Joule
Laser Pulse Width = 100 fs
Laser Power = 10 TW
Laser Spot = 30 microns
Gas  Thickness = 30 microns/100 microns
Plasma Density = half-critical

3D View in 30 Micron Thick Case
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Comparison of Acceleration

30 micron thick gas 100 micron thick gas

Max = 400 keV Max = 900 keV
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Scaling with Wavelength for Ion Acceleration

• CO2 laser wavelength ~10 time longer than Ti:Sapphire laser
• The plasma density should be 100 times lower
• Same energy protons should be obtained using a system where all 

the dimensions are 10 times larger, and the time scales are 10 
times longer.

• 500 micron plasma region and 500 fsec laser pulse needed 
• The charge obtained can be 10 times greater, but the laser energy 

required is also 10 times larger (a0 stays fixed)
• 5 J, 1/2-psec CO2 laser pulse in a 1/2-mm sub-critical gas region
• Thicker plasma region already available from the gas jet
• Only need one hydrodynamic shock to sharpen front gradient 
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Approach

• Generate hydrodynamic shock using a nsec laser as ignition laser

• Initial shock configuration is to sharpen front density gradient   

• Adjust ignition laser delay time from CO2 drive laser while monitoring 
plasma density profile (over critical density) and shock front location

• Adjust CO2 laser pulse characteristics to optimize ion acceleration.

• Generate sub-critical peak plasma density to access different ion 
acceleration mechanisms

• Vary hydrodynamic shock configuration to have a sharp rear density 
gradient to study effect on ion acceleration

• Compare experiment to simulations

• Continue experiments when ATF II upgrade CO2 laser is available
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Hydrodynamic Shock Generating Laser

New Wave Laser:
 = 532 nm
E = 45 mJ
τ = 5 nsec
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Tasks

1) Installation of nsec laser at the ion acceleration experimental set 
up.  Laser is provided by NRL.

2) Alignment of nsec laser into chamber.
3) Set up of shadowgraphy/interferometry to image hydrodynamic 

shock for timing adjustment with respect to CO2 laser pulse and 
to measure the gas density profile.

4) Measure ion acceleration characteristics as a function of 
different density profiles, such as sharp front gradient or sharp 
rear gradient.

5) Analyze ion acceleration data and compare with simulations.
6) Prepare manuscript to document results for publication.
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Beam/Laser Time Request

• Concurrent with allocated beam time for AE35

• First two weeks of November, 2014

• Set up time is projected to be one week, tentatively 
scheduled for the week of October 27, 2014
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• NRL proposes to incorporate a hydrodynamic shock generation capability in the 
existing AE35 experiment of ion acceleration in a gas jet using the ATF CO2 laser

• The purpose of the hydrodynamic shock is to modify the plasma density profile and 
examine the effects of sharp density gradients on the acceleration of ion from 
gaseous targets

• The hydrodynamic shock generation mechanism has been well studied at NRL.

• Ion acceleration using a Ti:Sapphire laser in a hydrodynamic shock has been 
observed at NRL.

• Using a hydrodynamic shock can be beneficial to ion acceleration using CO2 laser, 
such as better laser plasma coupling for ion acceleration.

• NRL will provide the ignition laser for generating the hydrodynamic shock.

• Requested beam time is concurrent with AE35.

Conclusions


