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 EW 

 It has been known the CP violation occurs by the phase of CKM matrix  

 K, D, B meson decay via direct and indirect CP violation 

 Contribution to EDM is very tiny,  

    6-orders magnitude below the exp. upper limit: 

 QCD 

 q term in the QCD Lagrangian: 

 

 

renormalizable and CP-violation comes due to topological charge density. 

 EDM experiment provides very strong constraint on 

  ⇒ q and arg det M need to be unnaturally canceled ! (strong CP problem) 
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CP symmetry breaking in the SM 



 Possible higher dimension operators 

 Effective Hamiltonian with higher dimension than 4 

CP symmetry breaking beyond the SM 

: Quark-photon 

: Quark-gluon 

: Pure gluonic 

SUSY model 

Chang, et al. (99), Ibrahim and Nath (08) 
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Constraint on nEDM 

 The present and future experiment is  

    close to “exclude” of MSSM 

pEDM experiment @ BNL,  

nEDM experiment @ J-PARC, … 

⇒ reaching a sensitivity of 10-29 e・cm ! 

 Current theoretical bound is  

   based on quark model. 

 Non-perturbative computation is  

   necessary to draw more reliable 

   conclusion. 

Harris,  0709.3100 
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What lattice QCD can do for nEDM 

 In principle 

 Direct estimate of neutron and proton EDM from q term, higher dim. 

CP operators 

 Matrix elements of higher dimension operators 

     

 In practice there are some difficulties 

 Statistical error 

    Source of CP violation comes from gauge background (topological 

charge, sea quark) which is intrinsically noisy. 

    Disconnected diagram is necessary because of flavor singlet contraction. 

 Systematic error 

     Volume effect may be significant. 

     Chiral behavior is important, dN ~ O(m) ? 
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 Spectrum method 

 Spin splitting of nucleon energy in external electric field and q term, 

which is given by 2-pt function: m↑ - m↓ = 2dNqE 

 Computational cost is cheap, and directly obtain EDM. 

 Form factor 

 

 

 F3 in Q2 → 0 provides dN  

 Subtraction to contribution of CP-odd phase in n propagator. 

 Imaginary q 

 Generate new configurations with imaginary q term, which may enhance 

signal. 

Possible lattice methods 

Izubuchi (07),  Horsley et al. (08) 

ES et al. CP-PACS(05), RBC(06) 

Aoki-Gocksch(89), ES et al. CP-PACS(06, 07) 
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 Ratio of spin up and down 

 

 

 Remarks 

 Reweighting works well for small real q  

 Temporal periodicity is broken by electric field. 
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Spectrum method 

•  There seems to be no significant difference 

between quench and full QCD.  

•  Statistical error is still large. 

 

•  Finite size effect from breaking of temporal 

periodicity is also significant 

Linear response, gradient is a signal of EDM. 

Full QCD with clover fermion:  

ES et al. (06, 07) 



 F3 signal 

 

 

 

 

 

 Nf=2 clover fermion 

 Sequential source for V current 

ES(08) 
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Form factor method 



Imaginary q  

 Analytically continued to pure imaginary,  q → iqI  

 

 

 There is no sign problem,  

    expect better signal. 

 Generate the QCD ensemble with qI: 

    distribution of topological charge is  

    shifted by qI  

 

Full QCD with clover fermion 

•  EDM is given by the slope.  

•  Clear signal, but systematic error due 

to chiral symmetry breaking of clover 

fermion  has not been taken into account. 

Izubuchi(07), Horsley et al. (08) 
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 Full QCD 

Comparison of results 

•  Lattice results are 

consistent within 1s. 

 

•  An order of magnitude 

larger than the results of  

current algebra. 

 

• Nf = 2+1 DWF configs. 

(RBC/UKQCD) are available 

for near physical pion mass. 

 

• Large statistical error is still 

problem. 

(O(100) measurements is not 

enough) 
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Error reduction techniques 

 Covariant approximation averaging (CAA) 

 For original observables O, (unbiased) improved estimator  

 

 

     which satisfies <O> = <Oimp> if approximation is covariant under lattice 

symmetry g, and error becomes 

 Ideal approximation 

ensemble ensemble  

•  Ignoring the error from O(rest) 

•  There may be many candidates of O(appx) e.g. LMA, heavy mass, … 

•  The cost of approximated observable need to be smaller than the original. 

RBC in prep. 
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Examples of CAA  

 Lowmode averaging (LMA) 

 Using lowlying eigenmode of Dirac operator to approximate propagator: 

 

 

where Nl is number of lowmode computed by Lanczos. 

Except for computational cost of eigenmode, Cost(LMA) ⋍ 0, but 

approximation is only lowmode part (long distance contribution). 

 All-mode averaging (AMA) 

 Using sloppy CG (loose stopping condition), 

 

If stopping cond. is 0.003, Cost(AMA) ⋍ Cost(CG)/50(without deflation). 

Approximation becomes better than LMA for other than lowmode 

dominanted observables (nucleon, finite momentum hadron, …). 

Guisti et al.(04),  Neff et al.(01), 

DeGrand et al. (04) 
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Examples of Covariant Approximations 
 All Mode Averaging 

AMA 

 Sloppy CG  or 

 Polynomial  

 approximations 

 

accuracy control : 

•  low mode part : # of eig-mode 

•  mid-high mode :  degree of poly. 
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Comparison between LMA/AMA 

 Preliminary result 

 8 configs, Gaussian smearing, NG = 23×4 = 32 sources, 24364×16 DWF 

•  t = 6: 

   Error in AMA is actually 

reduced by factor 5 

compared with orig. and 

LMA. 

 

•  t = 12 

   Error in AMA/LMA is 

reduced by factor 3--4 

compared with original. 

RBC in prep. 
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Comparison between LMA/AMA 

 Very preliminary 

Proton Ge (Original) 

Proton Ge  

(LMA) 

Proton Ge  

(AMA) 
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Conclusion and future work 

 Nucleon EDM in lattice QCD  

 Large statistical error is problem. 

 LMA/AMA may work well. 

 Aim for less than 10% statistical error. 

 Systematic study of finite size effect, chiral behavior, … 

 Other source CP effect  

Thank you. 
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Backup  
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 P(arity), T(ime reversal)[=CP] symmetry breaking  

EDM:  

 

under discrete symmetries, spin and E have different behavior 
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If d ≠ 0, 

Non-vanishing EDM is a signal of the P, CP violation. 

•  In EW P, CP violation following Kobayashi-Maskawa mechanism. 

•  In QCD, it is natural to exist but there has been no signal the 

breaking would be also.  

Electric dipole moment (EDM) 



Strong CP problem ? 

 Possible solution  

 Massless quark  

One of the quark flavor is massless (mu = 0 or md = 0),  

i.e. arg det M  mumdms/(mu+md+ms) = 0 

This has been refused by spectrum study in lattice QCD+QED. 

 

 Axion model 

 Pecci-Quinn (additional chiral) symmetry is spontaneously broken. 

    Axion of (in-)visible model has been almost excluded by cosmology. 

 

 Spontaneous breaking 
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 Contribution to EDM from weak interaction is very small  

 Vanishing 1-loop (no Im part), 2-loop diagram 

 Three-loop order(short) and pion loop correction (long): 

CP symmetry breaking in the SM 

Czmechi, Krause (1997) Khriplovich, Zhitnitsky (1982) 

Short distance Long distance 

which is the 6-order magnitude below the exp. 

upper limit: 
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 Energy difference between nucleon spin 

 Energy eigenvalue if q exist in the background 

 

 

    in the case of  

 2-pt function provides EDM as exponents 

 

 

 

 Two reweighting method 

Aoki-Gocksch(89), ES(06,07),  

Horsley(07), QCD-SF(08) 
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Spectrum method 

dN is given by fitting with the above asymptotic function.  

Eucleadian E, real θ 

Minkowski E, imaginay θ 



 Matrix element 

 

 

 F3 in Q2 → 0 is equivalent to dN  

 Expansion of 3pt func. at O(q) into different CP-odd sources: 

ES(05, 08) 
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Form factor  

Subtraction of CP-odd phase in n propagator (2nd and 3rd terms) is essential. 



 Statistical error 

 

 In order to reduce error, 

     do more Nmes independent measurements. 

     change to C of observables with small fluctuation. 

 

 Due to limited gauge ensembles, usually covariant observables under lattice 

symmetry Og are regarded as independent measurements: 

      

     e.g. g : lattice rotation, translation, … 

 Problem is computational cost.  
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Error reduction technique 



Lattice QCD’s works 

 One of the most successful non-perturbative calculation in the 

particle physics. 

 Reproduce the hadron spectrum using a few input parameters. 

 

 Monte-Carlo simulation is powerful tool. 

 

 Precision of lattice computations are getting better year by year thanks 

to development of algorithm (improved HMC, CAA) and machine 

(GPGPU, Blue Gene, Kei, …). 

 

 Flexible methodology to apply other physics concerned with strong 

interaction (e.g. many flavor, Graphene, …) 

 

BMW, PACS-CS, … 
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