Beyond the MSSM (?)

(why think about this now & what are some of the options)
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Searches for SUSY @ the LHC have
not found any signals (yet)...

From LHC4TeV @QCERN : ‘the
CMSSM/mSUGRA scenario has been
“punched in the face” by the data’...
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https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS12005/fig10.pdf

But do we need to go beyond the MSSM &
if so how far ?

Squark-gluino-neutralino model, m(i?) =0 GeV
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E.g.: itis afact that some MSSM SUSY-breaking models
have difficulties generating a ~125 GeV Higgs mass

et | — NUHM "
) — === N0 Scale
o u — mSUGRA
5 :1 . VCMSSM CMSB
- NMSSM AMSB
130}

125 =
— .
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115!/ —
Favos T po ails we all pes wil an po Poe ok
L 10 20 30 40 50 1112.3028
tan 3
model | AMSB | GMSB | mSUGRA || no-scale | ¢< NMSSM | VCMSSM | NUHM
Mrex 121.0 1215 128.0 123.0 1285 124.5 128.5

But these are NOT MSSM problems, only ones with
some SUSY-breaking mechanisms

(However watch out for the scan ranges ! )
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As we know, decoupling the 1st & 2"d gens. from the 3" can
allow us to avoid issues (i)-(iii) in a ‘natural’, generalized
MSSM scenario :

bino, wino,
s | &2nd squarks & sleptons, ~ |0 TeV

stau, tau sneutrino
Natural Supersymmetry \

fine tuning ~ 10%

e ciuino < .1 TeV
< 550 GeV
< 200%/tan 3 GeV My
— H,A, H+ sbottom
My
stop < 200 GeV

B chargino/neutralino < 300 GeV

< 120 GeV ms—= Higgs (h)
s goldstino > aVy

Barbieri, Hall,...

hureday, August 18, 2011

This requires that ‘light’ stops/sbottoms & Higgsinos should ‘soon’ be found
BUT their spectra may be non-trivial making observation harder as we’ll see..
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In a general MSSM scenario, such as the 19/20-parameter
pMSSM, present LHC SUSY searches are easily avoided
while obtaining a Higgs mass in the ~125 GeV region.

Furthermore, this Higgs can be reasonably ~SM-like

However, simultaneously requiring FT values below, say,
~100 (i.e., ~1%) is somewhat more difficult to achieve

Out of 2 sets of ~250k pMSSM models with a ¥ (G) LSP,
requiring FT <100, a Higgs mass of 12512 GeV , all 7 TeV
MET & non-MET LHC searches satisfied leaves us only
13 (0) models ! Low FT requires a special spectrum.

Thus FT motivates us to look beyond the MSSM...if you're
not a FT ‘believer’ you can settle for the pMSSM for now




ATLAS Coverage of our Neutralino LSP pMSSM
Models w/ Extrapolation to 8 TeV

Analysis TTeV1fh | 7TeVATHh|8TeV5fh! |8 TeV 20 fb!
Jets + MET 6.68% 23.23% 32.70% 45.11%
Many jets + MET 0.36% 1.61% 6.26% 7.535%
1 £+ jets + MET 0.81% 2.64% 1.41% 1.53%
2 + jets + MET 0.16% 0.22% 0.35% 0.38%
Remaining models 93.27% 76.72% 67.25% 54.87%

All sparticles are below 4 TeV :
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ne-tuning in the pMSSM
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 The ~125GeV Higgs mass removes many of the

models with the lowest FT values



An Example :
#178770 w/ FT=56.3

t, (318 Light Stop Decays
b
2
X2 (258) W
23 Z, W
10 (142) ¥ h
99, U
t 1o
25 59 |z
x1+ (1 14) . v \ /% 'Y
W
38 37,4
100 A4 A4

x1° (108) ’
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Light Sbottom Decays

b, (400)
b
0(258
; %3 ( ) -
10 z W
1 (142) ¥ h
b g2 w
19 3,6 S |z*
x4~ (114) v Y
W*
Lo 37.4
%+° (108) Y )

(w/ these BFs the ATLAS 2b-jet + MET search would exclude this b, below ~240 GeV)



Beyond the MSSM Scenarios

There are many choices on the menu...

Right now, it is just a question of taste.

Here we can only sample a few R-parity
conserving (for DM) possibilities

Grand Hotel, Stockholm

gm—

Fields: e.g., add an extra singlet S as in the NMSSM

Adding Symmetries: extend the gauge sector as in the E; SSM
More —

Courses Operators: e.g., from super & Kahler potent. a la BMSSM

SUSY: “N=172" ..make gauginos Dirac fields (SSSM)

_—

Usually only the influence on the Higgs is considered...but how do they
alter canonical SUSY searches? I'll say a few words about some of these.



* The simplest possibility & the one given the most attention
is the NMSSM w/ only one new SM singlet superfield, S.

How does this help? In the MSSM, to get a ~125 GeV Higgs
we need very large RCs from top/stop loops:

- ,  3g°m;] MEX . XC s G
m;, < My + = JJ — In|—]| +—1|1— ﬁ_ .

o C o BwEmy, M Mz 12M¢z
X = A -plty & Mg? = mymg,

Large A-terms & stop mixing forces large FT on us

A ~ 3y (A ;Mqus ) /2nMz]* log A/Mg
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 In the NMSSM the additional singlet alters the Higgs potential
& thus the tree-level mass for h :

V =V + Vb + Viont

— |A]2S)2 (Hiﬂu . H;Hd) + |MHTeH ) + £S?

2

| 2

| " 1 , . 2
+ 593 HIHa + (93 + 63) (HIH. — HiHa)

+m¥3y, HIH, +m% HIH,; +m%|S|? + (AAA{H:'EHE;}S + éﬁ.&HSE + c?.r:.'.)

o (TH[;;EIQISS]‘VT}E

~_ NMSSM

g

S I |

1
9 10

< m5

(A must be ~0.5)

2|X|? sin?(28) )

Do
cos~(20) +
(_ Uy

» The larger tree-level term in the
NMSSM allows us to reach ~125 GeV
(or larger) Higgs masses without the
very large MSSM loop contributions &
resulting large FT.

Let’'s compare...

Ellwanger 14



MSSM Higgs Mass NMSSM Higgs Mass
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Higgs Mass vs. Fine Tuning
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The modified Higgs
potential of the NMSSM
allows one to get to
~125 GeV h masses
without paying a big

FT cost.

Stops/sbottoms need not
be very light to achieve
low FT..but Higgsinos
are still light

Higgs properties can be
altered by mixing with
the singlet

— The additional singlet
can lengthen SUSY
decay chains degrading
searches

4
Hall etal. 16



* The additional field S helps w/ the FT problem but its SUSY
singlino partner may degrade MET SUSY searches if it
is (mostly) the LSP. Why?

The singlino’s couplings to other fields are typically small as
they occur only via mixing. Except for the NLSP, sparticles
don't like to decay into it

Cascades will typically end with an NLSP to singlino + X decay
Depending on the mass splitting, A, & the identity of X, the
MET search efficiencies will be modified (for better or worse)
The NMSSM NLSP is commonly a bino-like object.

A comparison of a few cMSSM & cNMSSM benchmarks with
similar spectra & input parameters is instructive in this case

as the value of A is varied Das efal., 1202.5244



NMSSM / MSSM events (in channel X)
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Benchmark line 10.1.1 : ATLAS 2-4 jet (0 lepton) channels
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Das etal., 1202.5244

» Comparison of NMSSM/CMSSM signal rates for various ATLAS searches:
njOl degrades for large A but multi-j is enhanced. This is a common feature

across the model parameter space...
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Benchmark line 40.2 1 - ATLAS 4-2 jet (D lepton) channelz
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Das etal., 1202.5244

 The ‘X’ in the NLSP decay mostly

produces extra jets that feed into
the multi-j searches at large A.
But overall MET is reduced in the
same parameter range

Generally, the n(=2,3)j0l search
carries the bulk of the ‘weight’ in
much of the parameter space &
which is not off-set by the multi-j
search gains.

A more general study of the SUSY
signatures in the NMSSM is clearly
warranted
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* A more radical departure from the MSSM occurs with an
extended gauge sector that likely requires additional matter
superfields for anomaly cancellation & is usually formulated
within a GUT framework.

 Some examples: U(1)SSM, BLMSSM, LRSSM, E6SSM, ...

In the E; case, matterisinthe 27 =16+ 10+1 of SO(10)
& the superpotential allows for different B & L assignments
for the additional fields

W=W,+ W, +W,+W,,
Wy = \HQu' + \,HQd" + \,HLe" + A\(H°HS® + A ,hh°S°
W= Ahu'e" + A, Lh°Q + Agv°hd®,  W,=2hQQ0 + A hu’d®, W,=1,HLy

20



- The augmented NMSSM-like Higgs sector plus the additional
D-terms allows us to get a ~125 GeV Higgs w/o large FT

V. = Vi+Vp+Viop +AV,
Ve = NISP(IHal* + [Hul") + X'|(HaH.)*,

9 2 2 9 i 12 s 2
Vo =2 (HjoaHa+HioH,) +% (Hal? = )" + 2 (QulHl? + QalHu? + Qs|SP)

Veost = m3|S[* +mi|Ha|* + m3|Hu|* + PAAS(HHH&”-E-L 1109.6373

* Most pheno studies of these models have focused on the
new matter (Higgs) fields &/or gauge boson sectors as they
are the true hallmarks of these scenarios..

* Due to the extended matter content, RGE running leads to
sfermions mostly being heavy while all gauginos are lighter

1102.4363"



New Z’ gauge bosons are one of the E;SSM hallmarks...

10?2

10°¢
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Present limits exceed ~1.5 TeV depending on couplings & decay scenarios
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« A very novel feature is that the Z’ decay itself can lead to

sparticle production depending upon model details. This can
produce resonance-enhanced rates for EWK-inos.

 The Z' also allows for regions where RH-sneutrinos are the

LSP altering cascade structures Porod etal.

« The additional charginos & neutralinos from the extended
gauge sector can further lengthen cascade decay chains.
E.g., less MET but more leptons or jets

MSSM:

q q'
[50%1 K — W=
/ lz?e»a]ir;az[‘?f;ﬁ]]; ETSS; |2032495

g & [23%] X 1

EgSSM:

q q'
[51%]1 X —> W
(28%1 ¥ o —— h

g & [21%]1 X fm ————> K fn
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Comparison of a typical gluino
initiated cascades in the MSSM
& E;SSM for the same parent
mass & c @ 8 TeV

Here the increase of the number of
jets & leptons generally more than
compensates the MET reduction
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FIG. 6. Missing transverse momentum and effective mass
after requiring three leptons, one with pr > 20 GeV and
two with pr > 10 GeV. When applying a cut on the missing
transverse momentum an estimation of the deviation from the
SM can be made. For ) 275 GeV we expect B = 3.24 5M
events and S5 = 4.4 events from the EsSSM gluinos, which
implies a 1.9¢ excess. When instead applying a cut on the
effective mass Mg > 900 GeV we expect S = 36.4 events
from the EsSSM and B = 5.0 events from the SM., which
implies a 8¢ excess.



« A somewhat different extension to the MSSM occurs when
additional adjoint matter fields are added & pair up with the
usual vector ones turning, e.g., Majorana gluinos into Dirac
fields (an N=1 2 SUSY ‘hybrid’). Note: if there is full N=2
SUSY in the gaugino sector there are also spin-0 sgluons !

* This changes the MSSM Feynman rules, hence, ¢’s & BF’s
In particular, the clean ‘like-sign’ dilepton signature is lost

since it is the result of having Majorana gauginos.

« Specifically, valence quark initiated squark production is
suppressed, i.e., q, gy q r) IS Now absent &q9r /9. QR

are both suppressed by an additional power of the
gluino mass

« Some Simplified Models show this...

hep-ph/0206096
0911.1951
1005.0818
1203.482125



r(pp = colored superpartners) ( ph)
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X Shy e, 555M 5 Tev

There is a considerable
reduction in the colored
sparticle cross section

in the case of Dirac gluinos
in comparison to the MSSM

This paper examines in some detail how specific ATLAS &
CMS jets+ MET analyses will be degraded by changing from
M — D gluinos on a SR by SR basis via fast MC (Delphes)

A direct comparison of an SSSM & three MSSM benchmarks
was performed

Kribs & Martin
1203.4821

(Aside: for DM annihilation, Majorana vs Dirac LSPs can be critical) %
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1203.4821

A serious reduction in the squark mass reach is clearly observed in the
SSSM case...more studies would be very useful
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Summary & Outlook

The MSSM is certainly compatible with the Higgs evidence,
the lack of a SUSY signal @ 7 TeV & the ‘requirement’ of

low FT but the data selects a very ‘special’ type of sparticle
spectrum that is likely to be accessible at 8 TeV w/ 20+ fb-.

However, going beyond the MSSM menu allows for a much
greater flexibility but requires the addition of more ‘courses’

Adding ‘courses’ not only modifies the Higgs sector but can
lead to an overall modification in conventional SUSY rates
& signals (e.g., like-sign leptons) BUT is also sometimes
accompanied by new signatures, e.g.,aZ’

We look forward to the 8 TeV results in July... | Japun umo(
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| want to thank the organizers &
especially our BNL hosts for arranging
this great workshop !
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Some Common Model Properties :

Gluinos & 15427 gen. squarks all lie above 1.25 TeV

Wino/Higgsino LSPs only w/ a chargino below 270 GeV in
all cases. Binos are all above 1.3 TeV

Lightest stop (sbottom) between 300 & 1100 (400 & 1700)GeV
Sleptons all over the place

FT mostly driven almost entirely by pn & A,

31



7 models 7 TeV ~1 fb! 7 TeV ~5 fb!
excluded

njol [56/11] 6.68% 23.23%
multi-j [4/6] 0.36% 1.61%
nj1l [8/3] 0.81% 2.64%
nj2l [5] 0.16% 0.22%™
flavor (in progress) (ditto)
(sub)total 6.73% 23.28%

— nj0l is by far dominant in these searches

" In this case, we extrapolated to ~5 fb-!, since results have
not yet been released. We assumed that the number of
events observed equals the expected backgrounds &
that the analysis cuts are exactly the same as at ~1 fb™"

« Our analyses can be updated when more data is available:



(Preliminary) Extrapolation to Vs = 8 TeV

* The extrapolation here is greater than for ~1 > ~5fh1 @ 7 TeV

First pass: assume the cuts & analyses are as for 7 TeV & the number
of observed events equals the expected backgrounds in each SR.

* However, we need to know the backgrounds for 8 TeV !

Rescale ATLAS 7 TeV backgrounds? How? Use MC to determine the
RATIOS of the expected backgrounds in each signal regionat 7 & 8 TeV
and use them as transfer factors

* When low statistics becomes an issue we closely follow ATLAS’ approach
using the sideband ‘ABCD’ method & then rescale the control regions

Of course we still need to generate the relevant SM MC backgrounds
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SM Background Generation @Vs=7 & 8 TeV

ZIW: + (0-4) |

e WW/ZZ + (0-2)j
<> ME + PS, weighted evts

tt-bar + (0-1)j
~1TB

single t +(0-2)j

QCD up to 6 jets
w/ Sherpa
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* Not too surprisingly, the gain in pMSSM coverage going
to 8 TeV is substantial due to the increases in ¢’s. nj0l
continues to dominate :

8 TeV 5 fb 8 TeV 20 fb

njoI” 32.70% 45.11%
multi-j”~ 6.26% 7.35%
nj11™ 1.41% 1.53%
nj2l*+ 0.35% 0.38%
flavor (in progress) (ditto)
(sub)total 32.75% 45.13%

** extrapolated from ~5 fb'! analysis ** extrapolated from ~1 fb-! analysis

« Ys=13-14TeV is needed for more complete coverage
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How does the pMSSM respond to negative searches ?

'C"jgzzt | Note that colored sparticles get
sparticle heavier, i.e., the distributions
B | peak at higher masses as the
| searches progress but color
EE: singlets distributions are just
et~ ) rescaled downward
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Number of Models
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mst0p1

Xy = A - i

2 —
MS - mstop1 ) mstop2

In the pMSSM:

stop, masses as low as ~250 GeV
are still found for large X;/M, values

for either model set
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