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Introduction
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✤ Uncertainties in our models of neutrino interaction are a major source of 
systematics on oscillation measurements, even after near detector constraints: 
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T2K’s 2015 oscillation 

analyses

Discrepancy in hadronic energy in the 
NoVA near detector, a significant source of 

systematic uncertainty on NoVA’s 
oscillation results, possibly due to 

insufficiencies in neutrino interaction model 
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Introduction
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✤ And we know that reducing systematics is increasingly important to our field:
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DUNE CP sensitivities versus 
exposure. Band illustrates range of 

results for different levels of systematic 
uncertainty

Where DUNE wants to be

Where we are now
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One cross section 
measurement
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Any one cross section measurement probes the superposition of many different effects 
that we need to model separately for experiments like DUNE

Introduction
✤ Developing models of neutrino interactions is difficult — there are many, many 

unknown parameters, and we generally have to measure a bunch of them at 
once:



✤ We address this problem by making many different cross section measurements, 
where different effects have different contributions
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Introduction
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#2
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#N

By making measurements of different channels, on different nuclei, at different energy 
ranges, using different reconstruction techniques, we can disentangle the many 

different effects

…



Introduction
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✤ The MINERvA detector was designed to do 
just this: to measure many different cross 
sections, to provide data constraints for 
models of neutrino interaction in  1-20 GeV 
region

✤ Can make measurements:

✤ Using different reconstruction 
techniques (enabled by fine-grained 
detector)

✤ In neutrino and antineutrino beams in 
several different wide-band beam tunes

✤ On many different nuclei within the 
same beam

✤ Part of a broad global cross-section effort 
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The NuMI Beamline

~210 m 
of rock

MINERνA

✤ Target/Horn spacing can be varied to produce 
different energy spectra

✤ My talk today focuses on the “Low Energy 
(LE)” data taken 2010-2012

✤ We are currently running in the “Medium 
(ME)” configuration of the NOνA era.  
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MINOS Near Detector: 
measures charge and 

momentum of muons that exit 
the back of MINERνA

MINERνA Outer HCAL: 
scintillator + steel

MINERνA Inner Detector

The MINERνA Detector
✤ MINERvA is a scintillator-based neutrino 

detector that sits just upstream of the MINOS 
near detector in the NuMI beam
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!MINOS!Near!Detector!

MI
NE
Rν
A!

MINERνA Outer HCAL: 
scintillator + steel

HCAL 
(scintillator + steel)ECAL 

(scintillator + lead)
Tracker 

(fully active scintillator)

Nuclear Targets
(C, Pb, Fe, H2O + Scintillator)

The MINERνA Detector



250 kg 
Liquid He 

1” Fe / 1” Pb 
323kg / 264kg 

500kg 
Water 

W
ater 

Ac#ve&Scin#llator&Modules&

Tracking 
Region He#

1” Pb  / 1” Fe 
266kg / 323kg 

3” C / 1” Fe / 1” Pb 
166kg / 169kg / 121kg 0.3” Pb 

228kg 

.5” Fe / .5” Pb 
161kg/ 135kg 

Targets 
material 
includes: 
solid iron, 
lead, and 
carbon; 
liquid 

helium and 
water
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The MINERνA Detector



MINERνA Results
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Some of MINERvA’s 2013-1015 Results
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Results — Overview
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✤ Today I’m going to discuss a subset of our 2015 results:

✤ νe CCQE 

✤ Charged and neutral CC pion production

✤ NC Kaon production

✤ DIS nuclear target ratios



Results: Flux
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✤ It turns out neutrino interaction cross sections 
isn’t the only way that MINERvA can help 
oscillation experiments

✤ We are also testing many of the flux constraint 
techniques

✤ Our flux estimate starts with a Geant4-based 
simulation of the NuMI beam line

MINERνA



Results: Flux

16

✤ Geant4 model constrained by NA49 and 
MIPP (pi/k ratio only); current flux has 
~10% uncertainties in focusing peak



Flux: ν - e Scattering
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✤ We are also pursuing several in situ flux constraints:

✤ Neutrino scattering on 
electrons is a well understood 
electroweak process

✤ Signal in MINERνA is a single 
electron moving in beam 
direction

✤ Process cross section is 
smaller than nucleus 
scattering by a factor of 
2000→ statistically limited

MINERνA Data
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Flux: ν - e Scattering
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✤ Effect of neutrino-electron scattering constraint:

Net effect on flux FHC νμ flux between 
0 and 8 GeV:

Lowers prediction by 5%
Lowers fractional uncertainty from 8.7 

to  5.8%

✤ We also expect two major flux updates before the end of 2015, incorporating 
more external data and a demonstration of the low-nu technique

Change in Flux Change in Flux Uncertainty



Results: Electron Neutrino CCQE
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✤ νe Charged-Current Quasi-
Elastic (CCQE) is a signal 
process in νe appearance 
measurements

✤ Models of this process are 
tuned using νμ CCQE 
measurements + an 
assumption of lepton 
universality

✤ MINERvA has made the first 
direct measurement of this 
process using the 1% νe 
component of our νμ beam



Results: Electron Neutrino CCQE
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✤ Signal isolated by identifying 
electromagnetic showers with an 
electron-like dE/dx profile at beginning 
of track

✤ In elastic background reduced by 
selecting events with low amounts of 
off-shower energy

ar
Xi

v:
15

09
.0

57
29

 



21

Results: Electron Neutrino CCQE
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Results: Electron Neutrino CCQE
✤ Can also directly compare electron neutrino and muon neutrino CCQE, using 

MINERvA’s earlier νμ results:

✤ Again, good agreement with expectation — indicates that tuning νe  models 
with νμ data is a reasonable thing to do 
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Results: Charged Current Pion Production

Neutrino Resonant Pion 
Production Candidate
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✤ Pion energy distributions are heavily 
sculpted by final state interactions

✤ Sculpted in different ways for charged 
and neutral pions

✤ Charged pions: shape of model areas 
well; overall normalization off by ~30%

✤ Neutral pions: Good agreement seen at 
high energy, where FSI is rare, poor 
agreement at lower energy, where FSI 
processes dominate

Charged 
Pions

Neutral 
Pions

Results: Resonant Pion Production
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Results: Resonant Pion Production

✤ For muon variables, FSI impact 
is quite different: categories 
populate all regions of muon 
distributions evenly

✤ Changes to FSI models would 
change the normalization of 
these distributions, but do not 
affect shape

✤ Shape is a probe of other non-
FSI interaction parameters 
(nuclear structure and neutrino-
nucleon amplitudes)
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Results: Resonant Pion Production

Muon angle 
and muon 

momentum 
shape agree 
very well!

Substantial 
disagreements 

in pion 
variables likely 

due to FSI 
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Results: NC Kaon Production

✤ Charged and neutral current kaon production are sensitive probes of 
FSI models

✤ Neutral-current reactions like 
✤ ν p → ν K+ Λ
✤ ν n → ν K+ Σ-  

   are backgrounds in searches for p → K+ ν

✤ Particularly problematic for water Cherenkov detectors, where kaon 
is below Cherenkov threshold

✤ Mismodeled rates for processes that appear as Kaon + nothing 
would be problematic even for liquid Argon detectors
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Results: NC Kaon Production

✤ Key distinguishing 
feature of kaons for 
MINERvA: time 
separation of kaon and 
decay products

✤ Here, color denotes hit 
time

Module Number

nu beam



29

Results: NC Kaon Production
✤ Preliminary results from 

MINERvA indicate that rate 
and spectra are well 
modeled below the 
Cherenkov threshold

✤ Final results, including a 
companion charged current 
analysis (sensitive probe of 
FSI models) expected in next 
few months
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Results: Inclusive Target Ratios

250 kg 
Liquid He 

1” Fe / 1” Pb 
323kg / 264kg 

500kg 
Water 

W
ater 

Ac#ve&Scin#llator&Modules&

Tracking 
Region He#

1” Pb  / 1” Fe 
266kg / 323kg 

3” C / 1” Fe / 1” Pb 
166kg / 169kg / 121kg 0.3” Pb 

228kg 

.5” Fe / .5” Pb 
161kg/ 135kg 

MINERvA 
has also 
begun to 
study the 

ratio of 
neutrino 

interactions 
on different 
nuclei using 
solid nuclear 

targets.  
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Results: Inclusive Target Ratios
✤ Inclusive charged current cross 

section ratios of a dimensionless 
scaling variable called “x”

✤ x corresponds to the fraction of the 
initial nucleon’s momentum that is 
carried by the struck quark

✤ Large normalization uncertainties 
cancel in ratios
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Carbon
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Lead

high x = more elastic

Phys. Rev. Lett. 112, 231801
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✤ The accepted model of 
nuclear effects is wrong

✤ And it is increasingly 
wrong in heavier nuclei

✤ High-x behavior implies 
mismodeling of A-
dependence of quasi-
elastic interactions
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Carbon

Iron

Lead

Results: Inclusive Target Ratios

Phys. Rev. Lett. 112, 231801
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Results: Inclusive Target Ratios

Ratio measurements like these 
can also be used to study a  

mysterious phenomenon first 
observed in muon scattering: 

the “EMC effect”

The EMC Effect: 
An unexpected dip in the ratio of muon scattering 
cross section on heavy nuclei compared to those 

on deuterium between x = ~0.3 and ~0.9

JLab Data
SLAC Fit
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Results: DIS Target Ratios

✤ This year, we produced our 
first exclusive nuclear target 
ratios — measuring Deep 
Inelastic scattering

✤ Simulation is GENIE, which 
does not include any attempt 
to predict impact of EMC 
effect on neutrino scattering

✤ Simulation is in good 
agreement with MC in the 
EMC region (0.3 - 0.8)

You are now 
looking at a 

zoomed x-axis 
compared to the 

CC inclusive 
ratios a few 
slides ago
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Future Plans
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This analysis used the high 
energy tail of our “Low Energy” 

dataset.  We are now 
accumulating many more events 

in the Medium Energy beam 
configuration

✤ The Medium Energy data we 
are taking now is rich in 
statistics for this and several 
other analyses

✤ Also expect ~factor of 10 more 
statistics for the neutrino-
electron scattering flux 
constraint

✤ There are also ~ten other active 
not-yet-published analyses 
beyond what I’ve talked about 
that use low energy data



Future Plans: CAPTAIN MINERνA
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✤ CAPTAIN MINERvA is a proposal to 
combine the CAPTAIN 5-ton liquid 
Argon detector with MINERvA in the 
NuMI beam

✤ Complements BNB cross section 
program by measuring higher energy 
portion of DUNE flux

✤ Allows CH/Argon measurements to 
untangle nuclear effects

See CAPTAIN talk from Lisa Whitehead 



Conclusion
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✤ MINERvA  has become a prolific source of neutrino scattering data

✤ Our data is illuminating locations where model development is needed for DUNE and 
beyond

✤ These precision measurements will provide many of the powerful constraints needed to meet 
the systematics goals of precision oscillation measurements
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Thank You!
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From the MINERvA Collaboration
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Results: DIS Target Ratios

✤ This year, we produced our 
first exclusive nuclear target 
ratios — measuring Deep 
Inelastic scattering

✤ Simulation is GENIE, which 
does not include any attempt 
to predict impact of EMC 
effect on neutrino scattering

✤ Simulation is in good 
agreement with MC in the 
EMC region (0.3 - 0.8)



Future Plans: Model Building
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✤ Making these measurements is the first step in 
developing models and event generators 
needed by DUNE and other oscillation 
experiments

✤ There are several organizations actively 
working on model development and tunes of 
models to global data

✤ There is broad overlap in collaboration 
between the MINERvA collaboration and 
these organizations

✤ We are actively working with them to ensure 
that our results are minimally model-
dependent and in a format easily consumable 
by model developers

FENIXS

NuSTEC

GENIE


