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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by

Snf =
1

2

∑

n,µ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + m
∑

n

ψ̄nψn . (1)

Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
ψn ,

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
.

(2)
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[γµ , γν ]
2

}
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where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
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4

Here it has only two zeros located at p = (0, 0, 0, 0), (0, 0, 0,π). These two species are not

equivalent since the gamma matrices are differently defined between them as γ′
µ = Γ−1γµΓ.

In the above case it is given by Γ = iγ4γ5. This means the chiral symmetry possessed

by this action is identified as a flavored one given by γ5 ⊗ τ3. This lattice fermion breaks

discrete rotational symmetry, or hypercubic symmetry. The residual symmetry is spatial

cubic symmetry, corresponding to the permutation of spatial three axes. As a result, it

possesses only CT and P symmetry.

(1) U(1)V × U(1)A

(2) P

(3) CT

(4) Cubic symmetry

Now let us look into symmetries of the naive lattice fermion with complex chemical

potential. The massless action is given by

Sn(µ) =
1

2

∑

x

[
3∑

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j)

+ ψ̄xγ4

(
eµRe+iµImUx,x+4ψx+4 − e−µRe−iµImUx,x−4ψx−4

)
]

(3)

The action obviously breaks the hypercubic symmetry into the spatial cubic symmetry. It

also breaks C,P and T symmetries into CT and P symmetry. We line up symmetries of this

case below.

(1) U(4) × U(4) (residual flavor symmetry among 16 species)

(2) P

(3) CT

(4) Cubic symmetry

These discrete symmetries are the same as those of Karsten-Wilczek fermion. From

the viewpoint of the universality class, these two theories belong to the same class. It is

reasonable since the Karsten-Wilczek term proportional to r in Eq.(1) works to assign O(1/a)

imaginary chemical potential to 14 species while 2 species has zero imaginary chemical

potential. More precisely, in weak-coupling limit, two of 16 species have zero imaginary
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X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)
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25

FIG. 8: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field case in mo-

mentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn − (MP + 0.1MA). (c)

Dn − (MP +MV +MT +MA).

where
∑

perm. means summation over permutations of the space-time indices.

Now we derive the flavored mass terms required to detect the index from the spectral

flow of the Hermitean operator. As in the d = 2 case, it should be constructed so that the

associated Hermitean operator has a flavor-singlet mass part as γ5M ∼ γ5⊗ (1⊗1⊗1⊗1).

Such a mass term is just the P-type mass (A7). Thus the flavored mass term for the

Hermitean operator is given by

MP = mP

∑

sym.

4
∏

µ=1

Cµ. (A8)

With the Hermitean operator Hn = γ5(Dn − MP), we reveal the index theorem with the

naive fermion as in the d = 2 case. Here we only show the figure for eigenvalues of the free

Dirac operator Dn −MP in Fig. 8(a). The mass term splits the modes into two branches,

which are 8 fold degenerate. If we introduce other types of mass terms, the degeneracy is

lifted as seen in Fig. 8(b).

Next we show the flavored mass term to yield a single-flavor naive overlap fermion in 4d.

As in the case of 2d there are some possibilities to realize it. The simplest example of the

mass term to yield a single-flavor naive overlap fermion with hypercubic symmetry is given

by

MP +MV +MT +MA. (A9)

The eigenvalues of the Dirac operator with this mass term is depicted in Fig. 8(c). Here

8 8
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Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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・2nd derivative terms

Vector (1-link)

Tensor (2-link)

Axial-V (3-link)

Pseudo-S (4-link)

4 8 4

1. Flavored mass

・Cousins of Wilson fermion

Creutz, Kimura, Misumi(2010)

・gamma-5 hermiticity
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FIG. 8: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field case in mo-

mentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn − (MP + 0.1MA). (c)

Dn − (MP +MV +MT +MA).

where
∑

perm. means summation over permutations of the space-time indices.

Now we derive the flavored mass terms required to detect the index from the spectral

flow of the Hermitean operator. As in the d = 2 case, it should be constructed so that the

associated Hermitean operator has a flavor-singlet mass part as γ5M ∼ γ5⊗ (1⊗1⊗1⊗1).

Such a mass term is just the P-type mass (A7). Thus the flavored mass term for the

Hermitean operator is given by

MP = mP

∑

sym.

4
∏

µ=1

Cµ. (A8)

With the Hermitean operator Hn = γ5(Dn − MP), we reveal the index theorem with the

naive fermion as in the d = 2 case. Here we only show the figure for eigenvalues of the free

Dirac operator Dn −MP in Fig. 8(a). The mass term splits the modes into two branches,

which are 8 fold degenerate. If we introduce other types of mass terms, the degeneracy is

lifted as seen in Fig. 8(b).

Next we show the flavored mass term to yield a single-flavor naive overlap fermion in 4d.

As in the case of 2d there are some possibilities to realize it. The simplest example of the

mass term to yield a single-flavor naive overlap fermion with hypercubic symmetry is given

by

MP +MV +MT +MA. (A9)

The eigenvalues of the Dirac operator with this mass term is depicted in Fig. 8(c). Here

8      8

Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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with (Vµ)xy = Ux,µδy,x+µ. Here ε is represented as Γ55 = γ5 ⊗ γ5 in the spin-flavor
representation while ηµ followed by the transporter Cµ is represented as γµ ⊗ 1 up to
discretization errors, which we sometimes denote Γµ. Thus it is obvious that the MA

stands for (1⊗γ5)+O(a) while MH stands for (1⊗
∑

σµν)+O(a). We refer to MA as the
Adams-type [30] and MH the Hoelbling-type [32]. By diagonalizing γ5 or

∑
σµν , we find

that the Adams type splits 4 tastes into two branches with positive (m = +1) and the
other two with negative(m = −1) mass while the Hoelbling type splits them into three
branches with positive(m = +2), two with zero (m = 0) and the other one with negative
mass(m = −2). The divided Hoelbling flavored-mass terms (3.36)(3.37)(3.38) correspond
to divided types in the tensor-types mass for naive fermions (3.30)(3.31)(3.32) . They
have flavored structure as ∼ (1 ⊗ (σ12 + σ34)) + O(a). By diagonalizing it, we find the
flavor structure diag[0, 0,−2, 2]. They again split 4 taste into three branches with (1, 2, 1)
fermion modes. We will later discuss about whether these divided types have enough
discrete symmetries to restore euclidian Lorentz symmetry in the continuum limit.

We here check all these staggered flavored-mass terms (3.34)(3.35)(3.36)(3.37)(3.38)
lead to the second derivative terms proportional to a near the continuum. Near the
classical continuum limit, these staggered flavored-mass terms Mf are given by

Mf ∼ a

∫
d4xχ̄D2

µχ + O(a2) (3.43)

with proper mass shift. It is compatible with the criterion for the lattice fermion con-
struction. We now can construct the two types of staggered-WIlson fermions with these
flavored-mass terms which also lead to the staggered-overlap fermions.

Now let us compare these flavored-mass terms with the MP and M (i)
T for the naive

fermions in Fig. 3.6. It is obvious that the Adams-type flavored-mass term MA corresponds
to MP while the divided Hoelbling-type terms M (i)

H corresponds to M (i)
T . It is also possible

to see that MP and M (i)
T are decomposed into the Adams and the divided Hoelbling-

type terms through the spin diagonalization which we discussed in chapter 2 as χx =
γx4

4 γx3
3 γx2

2 γx1
1 ψx, χ̄x = ψ̄xγ

x1
1 γx2

2 γx3
3 γx4

4 . MP is decomposed into MA through this spin-
diagonalization as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx.

Here the signs in front of χ̄x come from the residual γ5 which remain in the process of
the spin diagonalization of MP . By diaonalizing γ5, we find two Adams types terms with
positive sign and two with negative signs. Such signs are not relevant for the species-
splitting, and we can neglect them. M (i)

T is decomposed into M (i)
H through the spin-

diagonalization. For example, M (1)
H is derived from M (1)

T as

ψ̄x[(C1C2 + C2C1) + (C3C4 + C4C3)]ψx

→ ±χ̄x[iε12η1η2(C1C2 + C2C1) ± iε34η3η4(C3C4 + C4C3)]χx. (3.44)

The two types of signs come from σ12 = γ1γ2 and σ34 = γ3γ4, which remain after the
usual spin diagonalization process. The point is that they commute with each other as
[σ12,σ34] = 0, and they can be diagonalized simultaneously. If σ12 is diagonalized as
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spin diag. Staggered flavored-mass

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 6, 2012

1 Introduction

Snf(M
(i)
T ) → Sst(M

(i)
H ) (1)

x → R(µν)R(ρσ)x (2)

Dnf − (MV + MT + MA + MP ) (3)

M (i)
H (4)

Snf(MP) → Sst(MA) (5)

H = γ5(Dnf − rM (i)
T ) (6)

Index(D) = 2d−1(−1)d/2Q (7)

λ(r) (8)

Dnf − M (i)
T (9)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1

4 χx+1̂+2̂+3̂+4̂

= (−1)x2+x4 χ̄xγ5χx+1̂+2̂+3̂+4̂

→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (10)

ψ̄xψx+1̂+2̂ + ψ̄xψx+3̂+4̂ = (−1)x2 χ̄xγ1γ2χx+1̂+2̂ + (−1)x4 χ̄xγ3γ4χx+3̂+4̂

→ ±χ̄xiε12η1η2χx+1̂+2̂ ± χ̄xiε34η3η4χx+3̂+4̂ (11)

1

de Forcrand, Kurkela, Panero(2012)

Golterman, Smit (1984)   Adams(2009)

◆Staggered-Wilson

・could reduce numerical costs in 2-flavor overlap
・could reduce influence of taste-breaking for 2-flavor

group reflecting U(2) × U(2). For pseudo-scalar mesons, pions form a 63-plet of flavor SU(8)
and are degenerate in the chiral and continuum limit. At finite lattice spacing, flavor symmetry
is not U(8) but U(2)×U(2). The question is what irreps of this group 63 pions fall into. We do
not study this point further here, but note that this situation is similar to the staggered fermion
with flavored mass as we will show.

Spin diagonalization decomposes (11) into four equivalent staggered fermions with Adams-
type flavored mass [3]. MP is decomposed through spin-diagonalization as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx, (13)

where we define Adams-type flavored mass as

MA = ε
∑

sym

η1η2η3η4C1C2C3C4 = (1 ⊗ ξ5) + O(a), (14)

with

Cµ = (Tµ + T †
µ)/2, (15)

(ηµ)xy = (−1)x1+...+xµ−1δx,y, (16)
(ε)xy = (−1)x1+...+x4δx,y. (17)

Here signs in front of χ̄x in (13) come from γ5 which remains after the spin diagonalization of
MP . By diaonalizing γ5, we find two with positive sign and two with negative signs. Such signs
are not relevant for species-splitting. Now we derive staggered fermion with flavored mass: (8)
is decomposed into

SA0 =
∑

xy

χ̄x[ηµDµ + MA]xyχy, (18)

and (11) is decomposed into

SA1 =
∑

xy

χ̄x[ηµDµ + r(1 + MA)]xyχy, (19)

where Dµ = 1
2(Tµ − T−µ). Lower flavor symmetry (U(2) × U(2)) in (8)(11) leads to breaking

of shift and spatial inversion symmetries into a combined one in both cases (18) (19) as we will
show later. However the action without non-hopping terms (18) possesses more symmetries as
remnant of Γ̄(−), which we call ”special-charge shift” and ”special-charge inversion”. In Sec. 3
we investigate symmetries and spectrum of these deformed staggered fermion.

2 Symmetries of Staggered fermions

We begin with review of original staggered fermions [4,5]. Symmetries of staggered fermions are
given by

{C0, Ξµ, Is, Rµν} × {U ε(1), C ′
T }m=0. (20)

Each of transformations is written as following:

(1) C0 is lattice charge conjugation, which is given by

C0 : χx → εχ̄T
x , χ̄x → −εχT

x , Uµ,x → U∗
µ,x. (21)

3

 ξ5=-1  ξ5=+1

§ Potential advantages of

・Index theorem  Adams (09), Creutz,Kimura,Misumi(10), Follana, et.al.(11)      
・Aoki phase  Creutz, Kimura Misumi (11) 
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FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about

Look into symmetries and pion spectrum !
Sharpe (2012)

∼ (1⊗ ξ5)
 ξ5=-1 → physical sector : 

 ξ5=+1 → decoupled sector : 

 ・With mass shift

Spectral flow

Aoki phase

�
h



(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.

5

classify 15 pseudoscalar operators Golterman (1986)

 7 irreps

C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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§ Staggered sym.

4 irreps of SO(4) upto 
cf.) ChPT by Lee, Sharpe (1999)

C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
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It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
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3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

§ Staggered-Wilson

1 & ξ5

ξ4 & ξ45

ξi4 & ξi45

ξi & ξi5

Irreps mix in ξ5 pairs

π0, π±

η�
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C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.
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theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
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symmetries are broken into
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T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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Another U(1) !

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (1)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (2)

MH = M (1)
H + M (2)

H + M (3)
H , (3)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (4)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (5)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (6)

MT $→ MH (7)

M (i)
T → M (i)

H (8)

[σµν ,σνρ] $= 0 (9)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (10)

x → R(µν)R(ρσ)x (11)

Dnf − (MV + MT + MA + MP ) (12)

M (i)
H (13)

1

Kimura, Komatsu, Misumi, Noumi, Torii, Aoki (2012) 
Creutz, Kimura, Misumi (2011)

2. Central-branch
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Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ #=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Prohibits additive mass renormalization !
SSB gives NG boson !
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∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (2)

MH = M (1)
H + M (2)

H + M (3)
H , (3)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (4)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (5)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (6)

MT $→ MH (7)

M (i)
T → M (i)

H (8)

[σµν ,σνρ] $= 0 (9)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (10)

x → R(µν)R(ρσ)x (11)

Dnf − (MV + MT + MA + MP ) (12)

M (i)
H (13)

1

Kimura, Komatsu, Misumi, Noumi, Torii, Aoki (2012) 
Creutz, Kimura, Misumi (2011)

2. Central-branch



◆ Strong-coupling QCD

In the case of the Wilson fermion, M̂ = (m + 4r)14 ≡ MW14 and P±
µ =

γµ ± r

2
. By taking

M0 = σ14 + iπγ5, we have





σ =
−MW ±

√
M2

W + 8(1 − r2)

4(1 − r2)
, π = 0 , M2

W ≥ M2
c

σ =
MW

4r2
, π2 =

1

16r4(1 + r2)
(8r4 − M2

W (1 + r2)) , M2
W < M2

c

(32)

where M2
c =

8r4

1 + r2
.

As discussed in the previous subsection, at MW = 0 we have an additional U(1) symmetry,

U(1)−V . Since this parameter regime resides in the parity broken phase, in which π2 $= 0 and

M2
W < M2

c , U(1)−V is spontaneously broken by the VEV of π in this case.

To compute the meson mass, we hereafter take r2 = 1 for simplicity. Because D(p) is block-

diagonal, we concentrate on its submatrix DXY (p) with X, Y ∈ {S, P, Aα}. Then, by setting

p = (π, π,π, π + imSPA ), we find that the S-P -Aα sector mass mSPA is given by

cosh(mSPA ) = 1 +
20M2

W

6 − 7M2
W

. (33)

Note that since the transformation (22) involves the site-dependent quantity (−1)n1+···+n4 , it

is natural to expand the momentum p around (π, π,π, π). Eq. (33) tells us that the meson

becomes a massless NG boson at MW = 0 as expected. If we use the exact form of f(x) in the

large Nc limit, we then obtain

cosh(mSPA ) = 1 +
2M2

W (16 + M2
W )

16 − 15M2
W

, (34)

which again shows that a massless NG boson appears at MW = 0.

Before closing this subsection, it is worth noting that MW = 0 corresponds to the cen-

tral cusp in the parity broken phase, at which six fermion modes with momentum shift,

p = (π, π, 0, 0), (π, 0,π, 0), (π, 0, 0,π), (0,π, π, 0), (0,π, 0, π) and (0, 0,π,π), are expected to

appear in the continuum limit. Although we have not yet known much about the continuum

limit for this cusp, it is expected to correspond to QCD with six flavors, which is still asymp-

totically free. Therefore, if an appropriate continuum limit exists, we expect the theory in the

limit will be Lorentz-symmetric as in the “physical” branch because the Wilson fermion ac-

tion itself possesses the hypercubic symmetry6 which is likely to lead to the Lorentz symmetry

6Although the 3rd term in (16) looks hypercubic non-invariant, it is just an expression artifact: As is argued
in [46], the spin-taste representation does not respect translational invariance, leading to apparent Lorentz non-
invariance in this case. Actually such a term is prohibited by imposing this invariance. The expression is not
suitable for study of Lorentz symmetry although it gives good insight into other symmetries.
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1

change of mass base・No additive mass renormalization (no fine-tuning)
・SSB of U(1) and massless NG boson

§ Advantages

§ Potential drawbacks

Aoki phase

・sign problem
・U(1) problem
・Quark mass 

�ψ̄ψ� = 0

�ψ̄γ5ψ� �= 0

Twisted-mass works ?

・Pion (eta) condensate

・No chiral condensate

→ 12-flavor massless QCD
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?

New possibility of many-flavor lattice QCD !
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3. Flavored chemical potential
・Real type  →   Sign problem
・Imaginary type  →  No sign problem
   “Minimal-doubling” Karsten(81)Wilczek(87)Creutz, 

Borici(07)Creutz&Misumi(10)

◆ Advantage

・U(1) chiral symmetry
・2 flavor possible

◆ Drawbacks
・O(1/a) chemical potential renormalization
・Tuning a parameter even for finite-µ QCD

! " # $ % ! " # $

! !

� � � � � � �� �

&'()*+ ,(-.*/0123405'3-(67*89

Aoki phase-like structure

Creutz & Misumi(2012)

�

µ

(1− cos pµ)

Finite-mass system(Wil) ⇆ Finite-density system(FCP) 

(i) γ4

3�

j=1

(1− cos pj)

Misumi (2012)

cf.)Bedaque, Buchoff, Tiburzi, Walker-Loud(08)

action is obtained by introducing a Wilson-like term proportional to iγ4 as

SKW =
∑

x

[
1
2

4∑

µ=1

ψ̄xγµ (Ux,x+µψx+µ − Ux,x−µψx−µ)

+r
i

2

3∑

j=1

ψ̄xγ4 (2ψx − Ux,x+jψx+j − Ux,x−jψx−j)

]
(1)

where the link variables satisfy Uxy = U †
yx and r is the minimal-doubling

parameter which should be taken as r > 1/2. For the free theory, the
associated Dirac operator in momentum space is given by

Dmd(p) = i
4∑

µ=1

γµ sin pµ + irγ4

3∑

j=1

(1 − cos pj). (2)

Here it has only two zeros located at p = (0, 0, 0, 0), (0, 0, 0, π). These two
species are not equivalent since the gamma matrices are differently defined
between them as γ′

µ = Γ−1γµΓ. In the above case it is given by Γ = iγ4γ5.
This means the chiral symmetry possessed by this action is identified as a
flavored one given by γ5⊗ τ3. This lattice fermion breaks discrete rotational
symmetry, or hypercubic symmetry. The residual symmetry is spatial cubic
symmetry, corresponding to the permutation of spatial three axes. As a
result, it possesses only CT and P symmetry.

(1) U(1)V × U(1)A

(2) P
(3) CT
(4) Cubic symmetry

Now let us look into symmetries of the naive lattice fermion with complex
chemical potential. The massless action is given by

Sn(µ) =
1
2

∑

x

[
3∑

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j)

+ ψ̄xγ4
(
eµRe+iµImUx,x+4ψx+4 − e−µRe−iµImUx,x−4ψx−4

)
]

(3)

The action obviously breaks the hypercubic symmetry into the spatial cubic
symmetry. It also breaks C,P and T symmetries into CT and P symmetry.
We line up symmetries of this case below.

3
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σ = 0σ ≠ 0σ = 0



◆ Finite (T, µ) QCD with FCP

Figure 1: Contour plot of σ with r = 1. Vertical and horizontal axes mean T and

µ, respectively. Blue and Grean lines mean 2nd and 1st phase boundary of the chiral

transition. Red point shows the tricritical point (µtri, Ttri) = (0.090, 0.125). End

points of the boundary are given by Tc(µ = 0) = 14393/145305 = 0.09905... and

µc(T = 0) = 0.22.

A Formulas

A.1 Cosine function

cos2 θ =
1

2
(cos 2θ + 1) (19)

cos3 θ =
1

4
(cos 3θ + 3 cos θ) (20)

cos4 θ =
1

8
(cos 4θ + 4 cos 2θ + 3) (21)

A.2 Determinant formulas for Nc = 3

det





Qn Qn+1 Qn+2

Qn−1 Qn Qn+1

Qn−2 Qn−1 Qn



 = Q3
n + Qn−2Q

2
n+1 + Q2

n−1Qn+2

−2Qn−1QnQn+1 −Qn−2QnQn+2 (22)

5

§ Strong-coupling study
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FIG. 2: Chiral condensate σ and the baryon density ρB for (left) T = 0.08 and (right) T = 0.06.

Top and bottom panels show the massless m = 0 and massive m = 0.05 cases. There are 1st and

2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior instead of

the 2nd order transition.

phase diagram for r = 0.75.

FIG. 3: Phase diagram for the chiral transition with r = 0.75, d3 = 0 and m = 0. The transition

order is similarly changed from 2nd to 1st at the tricritical point (µtri, Ttri) = ...

related to effective imaginary chemical potential generated by the Karsten-Wilczek term:

How much the effective imaginary chemical potential can be read from π4 condensate in

T = 0 and µB = 0 limit although for large T and µB we cannot distinguish the condensates

from physical (T, µB) and artifacts of this formulation. We are then able to control the

effective imaginary chemical potential.

The question is how π4 condensate depends on d3 in T = 0 and µ = µRe = 0 limit. In

Fig. 5 we change d3 and depict three-dimensional chiral phase diagram for T , µB and d3. It

shows that the critical temperature and chemical potential varies with d3. We also show how

Smd =
�

x

�
1
2

3�

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j) +
1
2
ψ̄xγ4

�
eµUx,x+4ψx+4 − e−µUx,x−4ψx−4

�

+
i

2

3�

j=1

ψ̄xγ4 (2ψx − Ux,x+jψx+j − Ux,x−jψx−j) + id3ψ̄xγ4ψx

�

Chiral phase structure

Misumi, Kimura, Ohnishi (2012)

Effective potential of σ as a function of T, µ and d3

Feff(σ;m,T, µ, d3) =
9
2
σ2 − 3

2
log

�
1 + (d3 + 3)2

�

−max

�
3 arcsinh

�
3
√

2σ

2
�

1 + (d3 + 3)2

�
, µB

�
.

・1st and 2nd phase transition (m=0)
・1st, critical point and crossover (m≠0)
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FIG. 2: Chiral condensate σ and the baryon density ρB for (left) T = 0.08 and (right) T = 0.06.

Top and bottom panels show the massless m = 0 and massive m = 0.05 cases. There are 1st and

2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior instead of

the 2nd order transition.

phase diagram for r = 0.75.

FIG. 3: Phase diagram for the chiral transition with r = 0.75, d3 = 0 and m = 0. The transition

order is similarly changed from 2nd to 1st at the tricritical point (µtri, Ttri) = ...

related to effective imaginary chemical potential generated by the Karsten-Wilczek term:

How much the effective imaginary chemical potential can be read from π4 condensate in

T = 0 and µB = 0 limit although for large T and µB we cannot distinguish the condensates

from physical (T, µB) and artifacts of this formulation. We are then able to control the

effective imaginary chemical potential.

The question is how π4 condensate depends on d3 in T = 0 and µ = µRe = 0 limit. In

Fig. 5 we change d3 and depict three-dimensional chiral phase diagram for T , µB and d3. It

shows that the critical temperature and chemical potential varies with d3. We also show how

New possibility of (T,µ) lattice QCD !



4. Summary

1. Flavored-mass terms give us new types of  Wilson and   
    overlap fermions.   
 
2. Staggered-Wilson can be an alternative Wilson and overlap for  
     2-flavor QCD  (3 degenerate pion spectrum)

3. Central-branch fermion is a new possibility of use of Wilson   
    for many-flavor QCD without fine-tuning of parameters.  
    
4. Flavored-chemical-potential fermion would be useful for
    finite-temperature & density lattice QCD.  
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(1,2,1)(4,8,4)

Hoelbling-type flavored mass

・spin diagonalization
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1 Introduction

Snf(M
(i)
T ) → Sst(M

(i)
H ) (1)

M (i)
H (2)

Snf(MP) → Sst(MA) (3)

H = γ5(Dnf − rMT) (4)

Index(Dnf) = 2d−1(−1)d/2Q (5)

λ(r) (6)

Dnf − M (i)
T (7)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1

4 χx+1̂+2̂+3̂+4̂

= (−1)x2+x4 χ̄xγ5χx+1̂+2̂+3̂+4̂

→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (8)

ψ̄xψx+1̂+2̂ + ψ̄xψx+3̂+4̂ = (−1)x2 χ̄xγ1γ2χx+1̂+2̂ + (−1)x4 χ̄xγ3γ4χx+3̂+4̂

→ ±χ̄xiε12η1η2χx+1̂+2̂ ± χ̄xiε34η3η4χx+3̂+4̂ (9)

[σ12,σ34] = 0 (10)
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※ two terms simultaneously diagonalizable : 

Hoelbling (2010),   de Forcrand (2010)

Hoelbling, PLB696, 422(2011) [1009.5362].

→

Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP with species
split into (8, 8). (b) Dn − (MP + 0.1MA) with species split into (2, 2, 4, 4, 4). (c) Dn −
(MP + MV + MT + MA) with species split into (1, 15).
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Figure 3.4: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field case
in momentum space with 164 grids of the brillouin zone for Dn − M (i)

T where i = 1, 2, 3.
16 species are split into (4, 8, 4)
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3.3 Flavored mass for staggered fermions

In this section we study staggered versions of the Wilson term, in which the flavored-
mass terms lift the four degenerate tastes in a manner similar to the usual Wilson term.
The concrete examples of the flavored-mass terms for the staggered fermions were first
discussed in [59], and revisited in [30, 31, 32]. Thus the contents of this section are not
a contribution from this thesis. However, as we will see later, I contribute much to this
topic by studying the symmetries of them and the phase structure. Thus in this section
we need to review details of this topic.

As we have seen, the Wilson term splits the degenerate 16 species into 5 branches
where 1, 4, 6, 4 and 1 fermions live, which is just one example of the flavored-mass terms
for the naive fermions [29, 75]. The significant condition for flavored-mass terms to yield
physical fermions is that they should commute with γ5 so that the Dirac operator satisfies
the γ5 hermiticity. We here note the natural definition of γ5 in the naive fermion is flavored
such as γ5 ⊗ (τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3) in the spin-flavor representation. We have seen there are
4 types of non-trivial flavored-mass terms for the naive fermion which split species and
satisfy γ5 hermiticity. All these terms result in the same O(a) form as ∼ a

∫
d4xψ̄D2

µψ
near the continuum limit.

In a parallel way the staggered fermions also have non-trivial flavored-mass terms
which split 4 tastes and commute with γ5. In this case, the γ5 is expressed in spin-taste
representation as γ5 ⊗ γ5, which we sometimes denote as Γ55. Therefore we only have two
choices of possible flavored-mass terms to satisfy the above conditions: 1⊗γ5 and 1⊗σµν

(σµν = iγµγν). Actually these spin-flavor structures of flavored-mass terms are realized
for one-component staggered fermions up to O(a) discretization errors as

MA = ε
∑

sym

η1η2η3η4C1C2C3C4 = [1 ⊗ γ5] + O(a), (3.34)

and

MH = M (1)
H + M (2)

H + M (3)
H ,

=
2√
3
[1 ⊗ (σ12 + σ34 + σ13 + σ42 + σ14 + σ23)] + O(a), (3.35)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (3.36)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (3.37)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (3.38)

where

Cµ = (Vµ + V †
µ )/2, (3.39)

(ηµ)xy = (−1)x1+...+xν−1δx,y, (3.40)

(ε)xy = (−1)x1+...+x4δx,y, (3.41)

(εµν)xy = −(ενµ)xy = (−1)xµ+xνδx,y (µ < ν), (3.42)
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MH = M (1)
H + M (2)

H + M (3)
H , (12)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (13)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (14)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (15)

MT "→ MH (16)

M (i)
T → M (i)

H (17)

[σµν ,σνρ] "= 0 (18)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (19)

x → R(µν)R(ρσ)x (20)

Dnf − (MV + MT + MA + MP ) (21)

M (i)
H (22)

Snf(MP) → Sst(MA) (23)

H = γ5(Dnf − rM (i)
T ) (24)

Index(D) = 2d−1(−1)d/2Q (25)

λ(r) (26)

Dnf − M (i)
T (27)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1

4 χx+1̂+2̂+3̂+4̂

= (−1)x2+x4 χ̄xγ5χx+1̂+2̂+3̂+4̂

→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (28)

2

Adams-type flavored mass
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M (i)
T → M (i)
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(i)
T ) → Sst(M

(i)
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x → R(µν)R(ρσ)x (17)

Dnf − (MV + MT + MA + MP ) (18)

M (i)
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H = γ5(Dnf − rM (i)
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λ(r) (23)

Dnf − M (i)
T (24)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1
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→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (25)

(γ5 diagonalized) (26)

ψ̄xψx+1̂+2̂ + ψ̄xψx+3̂+4̂ = (−1)x2 χ̄xγ1γ2χx+1̂+2̂ + (−1)x4 χ̄xγ3γ4χx+3̂+4̂

→ ±χ̄xiε12η1η2χx+1̂+2̂ ± χ̄xiε34η3η4χx+3̂+4̂ (27)
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          broken to 2-link shift for SA 
          broken to 4-link shift for SH 

・Axis reversal                broken to shifted axis reversal 

  remain in SA

  broken to subgroup in SH 

・Conjugation                                   

In the QCD simulation we will tune the mass parameter M to take a chiral
limit. For some negative value of the mass parameter: −1 < M < 0 for
Adams-type and −2 < M < 0 for Hoelbling-type, we obtain two-flavor and
one-flavor overlap fermions respectively by using the overlap formula.

3 Symmetry

In this section we discuss the discrete symmetry of the staggered-Wilson
fermions. Most of conclusions we will show in this section were already
shown in the old reference [25, 27] and the recent two papers [9, 10]. The
potential problem for staggered-Wilson fermions in lattice QCD is the dis-
crete symmetry breaking. As discussed in [9, 10], the discrete symmetries
possessed by the original staggered fermion is broken to their subgroups both
in the Adams-type and Hoelbling-type actions. One of the broken discrete
symmetries is the shift symmetry, whose transformation is given by

Sρ : χx → ζρ(x)χx+ρ̂, χ̄x → ζρ(x)χ̄x+ρ̂, Uµ,x → Uµ,x+ρ̂, (9)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1.
The Adams-type fermion is invariant under the subgroup x → x + 1̂ ± µ̂
while the Hoelbling-type fermions is invariant under x → x + 1̂ ± 2̂ ± 3̂ ± 4̂.
Note that these subgroups include the doubled shift x → x + 2µ̂ as their
subgroup. The axis reversal invariance is also broken in both cases, whose
transformation is given by,

Iρ : χx → (−1)xρχIx, χ̄x → (−1)xρχ̄Ix, Uµ,x → Uµ,Ix, (10)

with I = Iρ is the axis reversal xρ → −xρ, xτ → xτ , τ #= ρ. In addition, the
Hoelbling-type fermion loses the original rotational symmetry of the stag-
gered fermion while it holds in the Adams-type fermion. The staggered
rotational transformation is given by

Rρσ : χx → SR(R−1x)χR−1x, χ̄x → SR(R−1x)χ̄R−1x, Uµ,x → Uµ,Rx, (11)

where Rρσ is the rotation xρ → xσ, xσ → −xρ, xτ → xτ , τ #= ρ,σ and
SR(x) = 1

2 [1 ± ηρ(x)ησ(x) ∓ ζρ(x)ζσ(x) + ηρ(x)ησ(x)ζρ(x)ζσ(x)] with ρ <> σ.
As shown in [25, 26], these transformations yield rotations in spinor

and flavor spaces. Here we use the momentum space method shown in
[25, 26] to identify the spinor and flavor labels in these: We first define
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C : χx → εxχ̄T
x , χ̄x → −εxχ̄T

x , Uµ,x → U∗
µ,x (1)

MA, MH, M (i)
H (2)

MA, MH (3)

ψ̄[1 ⊗ (τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3)]ψ (4)

ψ̄[1 ⊗ γ5]ψ (5)

MA = ζ5

∑

sym.

4∏

µ=1

Cµ (6)

M1L =
∑

µ

ξµCµ ∼
∑

µ

(1 ⊗ γµ) + O(a) (7)

MW ≡ m + 4r = 0 (8)

ψ̄ψ ↔ ψ̄γ5ψ (9)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (10)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (11)

1

6

flavor spaces respectively, which are given by two sets of 16×16 matrices Γµ and Ξµ. We note

they possess the properties {Γµ, Γν} = 2δµν , {Ξµ, Ξν} = 2δµν and {Γµ, Ξν} = 0. By using

these definitions the Dirac operator for the staggered fermion is given by Dst = iΓµ sin pµ

for the 16 multiplet φ(p) [30] while the shift transformation is given by essentially flavor

rotation as

Sµ : φ(p) → exp(ipµ)Ξµ φ(p). (12)

The axis reversal is given by spinor and flavor rotations as

Iρ : φ(p) → ΓρΓ5ΞρΞ5 φ(Ip). (13)

The rotational transformation is also given by both the spinor and flavor rotations as

Rρσ : φ(p) → exp(
π

4
ΓρΓσ) exp(

π

4
ΞρΞσ) φ(R−1p). (14)

By using this representation, we can clearly figure out the properties of the residual discrete

symmetry of the staggered-Wilson fermions. What we here want to emphasize is that

the staggered-Wilson fermions are invariant under the essential subgroup of the combined

transformations: Both the staggered-Wilson fermions are invariant under (4th-direction shift

with spatial axis reversal) as

IsS4 ∼ exp(ip4)Γ1Γ2Γ3Γ5 φ(−p, p4) ∼ exp(ip4)Γ4 φ(−p, p4), (15)

with Is ≡ I1I2I3. This is essentially the parity transformation as shown in section 3 of the

ref. [25]. Indeed, if we consider the theories on one- or two-flavor branches in the staggered-

Wilson fermions in the continuum limit, this transformation results in the usual parity as

ψ(p) → γ4ψ(−p, p4) for the Dirac fermion. Besides, by following the arguments in [27, 28] it

is also shown that the present actions still hold invariance under the parity transformation for

the 4-degenerate staggered fermion IsΞ4φ(−p, p4) = Γ4φ(−p, p4). Anyhow we can conclude

these fermion actions possess physically well-defined parity symmetry. We here note the

simple product of the µ-direction shift and the µ-direction axis reversal (shifted-axis reversal)

is also symmetry of both the fermions. The charge conjugation can be also shown to be

symmetry of these fermions by modifying the original charge conjugation transformation for

the case with the flavored-mass terms [25].

As is well-known, the usual “staggered hypercubic symmetry” means invariance under the

staggered rotation (11)(14) and the axis reversal (10)(13). Although both of the staggered-

Wilson fermions themselves do not have this symmetry, theories on the two- or one-flavor
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As shown in [25, 26], these transformations yield rotations in spinor
and flavor spaces. Here we use the momentum space method shown in
[25, 26] to identify the spinor and flavor labels in these: We first define
the 16 species-fields in the momentum space as φ(p)A ≡ χ(p + πA) (−π/2 ≤
pµ < π/2) where πA (A = 1, 2, ..., 16) being 4-dim vectors whose compo-
nents take 0 or π. For convenience, we here consider a 16-multiplet field as
φ(p) = (φ(p)1,φ(p)2, · · · ,φ(p)16)T . As this 16-multiplet field has both the
spinor(space-time) and the flavor(taste) indices, we can construct the two
sets of generators acting on the spinor and flavor spaces respectively, which
are given by two sets of 16 × 16 matrices Γµ and Ξµ. We note they possess
the properties {Γµ, Γν} = 2δµν , {Ξµ, Ξν} = 2δµν and {Γµ, Ξν} = 0. By using
these definitions the Dirac operator for the staggered fermion is given by
Dst = iΓµ sin pµ for the 16 multiplet φ(p) 1 while the shift transformation is
given by essentially flavor rotation as

Sµ : φ(p) → exp(ipµ)Ξµ φ(p). (13)

The axis reversal is given by spinor and flavor rotations as

Iρ : φ(p) → ΓρΓ5ΞρΞ5 φ(Ip). (14)

The rotational transformation is also given by both the spinor and flavor
rotations as

Rρσ : φ(p) → exp(
π

4
ΓρΓσ) exp(

π

4
ΞρΞσ) φ(R−1p). (15)

C : φ(p) → φ̄(−p)T (16)

By using this representation, we can clearly figure out the properties of the
residual discrete symmetry of the staggered-Wilson fermions. What we here
want to emphasize is that the staggered-Wilson fermions are invariant under
the essential subgroup of the combined transformations: Both the staggered-
Wilson fermions are invariant under (4th-direction shift with spatial axis
reversal) as

IsS4 ∼ exp(ip4)Γ1Γ2Γ3Γ5 φ(−p, p4) ∼ exp(ip4)Γ4 φ(−p, p4), (17)

with Is ≡ I1I2I3. This is essentially the parity transformation as shown
in section 3 of the ref. [25]. Indeed, if we consider the theories on one- or

1The origin of the discrepancy between this form and the usual spin-taste representation
is clearly elaborated in the reference, G. P. Lepage, [arXiv:1111.2955].
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(2) Ξµ is called ”shift”, which is given by

Ξµ : χx → ζµχx+µ̂, µ̄x → ζµχ̄x+µ̂, Uµ,n → Uµ,n+µ̂, (22)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1. In spin-flavor
representation it forms ”flavor reflection” up to phase factor as

Ξµ : Q(p) → exp(ipµ)(1 ⊗ ξµ) Q(p). (23)

(3) Is is called ”spatial inversion”, which is given by

Is : χx → (−1)x1+x2+x3χx′ , χ̄x → (−1)x1+x2+x3χ̄x′ , Uµ,x → Uµ,x′ , (24)

where x′ ≡ Isx is xi → −xi, x4 → x4, (i = 1, 2, 3). In spin-flavor representation it gives
spin-flavor rotation by γ4 as

Is : Q(p) → (γ4 ⊗ ξ4) Q(p′). (25)

(4) Rµν is hypercubic rotation, which is given by

Rµν : χx → SR(x′)χx′ , χ̄x → SR(x′)χ̄x′ , Uµ,x → Uµ,x′ , (26)

where x′ ≡ R−1
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Dim3, 4 :

Dim5 O(a):

Dim6 O(a ) : 2 types of four-fermi operators

No unphysical term nor taste-breaking term up to O(a)

Q̄(γµ ⊗ ξF )DµQ for ξF = 1 or ξ5 �̄γµDµ�, �̄�

�̄iσµνFµν�Q̄(iσµνFµν ⊗ ξF )Q for ξF = 1 or ξ5

Q̄(1⊗ ξF )Q

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6
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25 operators with ξ5 pair   →   50 operators

10 operators with ξ5 pair   →   20 operators

SA, SV, AS, VS, PV, PA, VP, AP, TV, TA, VT, AT, AA, PP , SP, PS, ST, PT, TS, TP, VV, AA, VA, AV, TT

TV, TA, VT, AT, VV, AA, VA, AV, TT+, TT-

→ No taste-breaking. No derivative terms. Contributes to potential

No taste-breaking in ChPT potential upto O(a ): SU(2)2

→ Taste-breaking. Derivative terms. No contribution to potential
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・ For other naive flavored mass terms 

MA  :  U(1) restored  

MT  :  U(2) restored

MP  :  U(2)×U(2) restored

・For staggered flavored mass terms 

MA  : CTΞ, CTI restoed
MH  :  CT restored

In the QCD simulation we will tune the mass parameter M to take a chiral
limit. For some negative value of the mass parameter: −1 < M < 0 for
Adams-type and −2 < M < 0 for Hoelbling-type, we obtain two-flavor and
one-flavor overlap fermions respectively by using the overlap formula.

3 Symmetry

In this section we discuss the discrete symmetry of the staggered-Wilson
fermions. Most of conclusions we will show in this section were already
shown in the old reference [25, 27] and the recent two papers [9, 10]. The
potential problem for staggered-Wilson fermions in lattice QCD is the dis-
crete symmetry breaking. As discussed in [9, 10], the discrete symmetries
possessed by the original staggered fermion is broken to their subgroups both
in the Adams-type and Hoelbling-type actions. One of the broken discrete
symmetries is the shift symmetry, whose transformation is given by

Sρ : χx → ζρ(x)χx+ρ̂, χ̄x → ζρ(x)χ̄x+ρ̂, Uµ,x → Uµ,x+ρ̂, (9)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1.
The Adams-type fermion is invariant under the subgroup x → x + 1̂ ± µ̂
while the Hoelbling-type fermions is invariant under x → x + 1̂ ± 2̂ ± 3̂ ± 4̂.
Note that these subgroups include the doubled shift x → x + 2µ̂ as their
subgroup. The axis reversal invariance is also broken in both cases, whose
transformation is given by,

Iρ : χx → (−1)xρχIx, χ̄x → (−1)xρχ̄Ix, Uµ,x → Uµ,Ix, (10)

with I = Iρ is the axis reversal xρ → −xρ, xτ → xτ , τ #= ρ. In addition, the
Hoelbling-type fermion loses the original rotational symmetry of the stag-
gered fermion while it holds in the Adams-type fermion. The staggered
rotational transformation is given by

Rρσ : χx → SR(R−1x)χR−1x, χ̄x → SR(R−1x)χ̄R−1x, Uµ,x → Uµ,Rx, (11)

where Rρσ is the rotation xρ → xσ, xσ → −xρ, xτ → xτ , τ #= ρ,σ and
SR(x) = 1

2 [1 ± ηρ(x)ησ(x) ∓ ζρ(x)ζσ(x) + ηρ(x)ησ(x)ζρ(x)ζσ(x)] with ρ <> σ.

C : χx → χ̄T
x , χ̄x → χT

x , Uµ,x → U∗
µ,x, (12)
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C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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3.1 Action and symmetries

The action for the Wilson fermion [1] is given by

S = Snf + SW with SW = −r

2

∑

n,µ

ψ̄n (ψn+µ̂ − 2ψn + ψn−µ̂) . (15)

In terms of the spin-flavor representation, the Wilson term SW is written as

SW = −r

2

∑

N,µ

[
2Ψ̄(N)

(
14 ⊗ γT

µ ⊗ γµ

)
Ψ(N) + Ψ̄(N)

(
14 ⊗ γT

µ ⊗ γµ

)
∇2

µΨ(N)

+Ψ̄(N)
(
γµγ5 ⊗ γT

5 ⊗ γµ

)
∇µΨ(N)

]
+ 4r

∑

N

Ψ̄(N) (14 ⊗ 14 ⊗ 14) Ψ(N) . (16)

The first three terms in (16) are invariant under the ordinary U(1) vector transformation, U(1)V ,

which is defined by

Ψ(N) → Ψ′(N) = exp [iθ(14 ⊗ 14 ⊗ 14)] Ψ(N) , (17)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp [−iθ(14 ⊗ 14 ⊗ 14)] , (18)

ψn → ψ′
n = eiθψn , ψ̄n → ψ̄′

n = e−iθψ̄n , (19)

and the site-dependent U(1) vector transformation, U(1)−V , defined by

Ψ(N) → Ψ′(N) = exp
[
iθ(γ5 ⊗ γT

5 ⊗ 14)
]
Ψ(N) , (20)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp
[
iθ(γ5 ⊗ γT

5 ⊗ 14)
]

, (21)

ψn → ψ′
n = ei(−1)n1+...+n4θψn , ψ̄n → ψ̄′

n = ei(−1)n1+...+n4θψ̄n . (22)

By contrast the last term in (16) is invariant only under the U(1)V transformation. Therefore,

the total Wilson fermion action possesses only the U(1)V symmetry for general values of m and

r. Interestingly enough, however, the additional U(1)−V symmetry appears if m and r satisfy

m+4r = 0, at which the on-site terms cancel out between the mass term and the Wilson term.

As we will show in the next subsection, this symmetry is spontaneously broken by the pion

condensate, 〈ψ̄γ5ψ〉.

3.2 Strong coupling analysis

Now we employ the strong coupling analysis to show that there appears an NG boson associated

with the U(1)−V symmetry breaking in the presence of the pion condensate. An effective action

for mesons in the strong coupling limit [42,9, 10] can be written in general as

Seff(M) = Nc

∑

n

[
∑

µ

Tr f(Λn,µ) + tr M̂M(n) − tr log M(n)

]
, (23)

5

In the case of the Wilson fermion, M̂ = (m + 4r)14 ≡ MW14 and P±
µ =

γµ ± r

2
. By taking

M0 = σ14 + iπγ5, we have





σ =
−MW ±

√
M2

W + 8(1 − r2)

4(1 − r2)
, π = 0 , M2

W ≥ M2
c

σ =
MW

4r2
, π2 =

1

16r4(1 + r2)
(8r4 − M2

W (1 + r2)) , M2
W < M2

c

(32)

where M2
c =

8r4

1 + r2
.

As discussed in the previous subsection, at MW = 0 we have an additional U(1) symmetry,

U(1)−V . Since this parameter regime resides in the parity broken phase, in which π2 $= 0 and

M2
W < M2

c , U(1)−V is spontaneously broken by the VEV of π in this case.

To compute the meson mass, we hereafter take r2 = 1 for simplicity. Because D(p) is block-

diagonal, we concentrate on its submatrix DXY (p) with X, Y ∈ {S, P, Aα}. Then, by setting

p = (π, π,π, π + imSPA ), we find that the S-P -Aα sector mass mSPA is given by

cosh(mSPA ) = 1 +
20M2

W

6 − 7M2
W

. (33)

Note that since the transformation (22) involves the site-dependent quantity (−1)n1+···+n4 , it

is natural to expand the momentum p around (π, π,π, π). Eq. (33) tells us that the meson

becomes a massless NG boson at MW = 0 as expected. If we use the exact form of f(x) in the

large Nc limit, we then obtain

cosh(mSPA ) = 1 +
2M2

W (16 + M2
W )

16 − 15M2
W

, (34)

which again shows that a massless NG boson appears at MW = 0.

Before closing this subsection, it is worth noting that MW = 0 corresponds to the cen-

tral cusp in the parity broken phase, at which six fermion modes with momentum shift,

p = (π, π, 0, 0), (π, 0,π, 0), (π, 0, 0,π), (0,π, π, 0), (0,π, 0, π) and (0, 0,π,π), are expected to

appear in the continuum limit. Although we have not yet known much about the continuum

limit for this cusp, it is expected to correspond to QCD with six flavors, which is still asymp-

totically free. Therefore, if an appropriate continuum limit exists, we expect the theory in the

limit will be Lorentz-symmetric as in the “physical” branch because the Wilson fermion ac-

tion itself possesses the hypercubic symmetry6 which is likely to lead to the Lorentz symmetry

6Although the 3rd term in (16) looks hypercubic non-invariant, it is just an expression artifact: As is argued
in [46], the spin-taste representation does not respect translational invariance, leading to apparent Lorentz non-
invariance in this case. Actually such a term is prohibited by imposing this invariance. The expression is not
suitable for study of Lorentz symmetry although it gives good insight into other symmetries.
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Λn,µ =
Vn,µV̄n,µ

N2
c

, M(n)αβ =

∑
a ψ̄a,α

n ψa,β
n

Nc
,

where Nc is the number of colors, Tr ( tr ) means a trace over color(spinor) index, and M(n)

is a meson field. The explicit form of the function f is determined by performing a one-link

integral of the gauge field. More explicitly we can write

V ab
n,µ = ψ̄b

nP
−
µ ψa

n+µ̂ , V̄ ab
n,µ = −ψ̄b

n+µ̂P
+
µ ψa

n , (24)

Tr f(Λn,µ) = −tr f
(
−M(n)(P+

µ )TM(n + µ̂)(P−
µ )T

)
, (25)

where 4× 4 matrices P±
µ are specified later. In the large Nc limit, it is known that f(x) can be

analytically evaluated as

f(x) =
√

1 + 4x − 1 − ln
1 +

√
1 + 4x

2
= x + O(x2) . (26)

However, in the following part of this paper, we will approximate f(x) as f(x) = x unless

otherwise stated because qualitative features such as an appearance of NG bosons remain

unchanged by this approximation.

To calculate meson masses we expand the meson field as5

M(n) = MT
0 +

∑

X

πX(n)ΓT
X , X ∈ {S, P, Vα, Aα, Tαβ} , (27)

where M0 is the vacuum expectation value (VEV) of M(n), and

ΓS =
14

2
, ΓP =

γ5

2
, ΓVα =

γα

2
, ΓAα =

iγ5γα

2
, ΓTαβ

=
γαγβ

2i
(α < β). (28)

Then the effective action at the second order of πX is given by

S(2)
eff = Nc

∑

n

[
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) πX(n)πY (n) +

∑

µ

tr (ΓXP−
µ ΓY P+

µ )πX(n)πY (n + µ̂)

]

= Nc

∫
d4p

(2π)4
πX(−p)DXY (p)πY (p) , (29)

where

DXY (p) =
1

2

(
D̃XY (p) + D̃Y X(−p)

)
, (30)

D̃XY (p) =
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) +

∑

µ

tr (ΓXP−
µ ΓY P+

µ )eipµ . (31)

5In eq. (27), S, P, Vα, Aα and Tαβ stand for scalar, pseudo-scalar, vector, axial-vector and tensor respectively.
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QCD with the fermions. The strong-coupling lattice QCD study with minimally doubled

fermions has been first done by some of the present authors in [29], where spontaneous

chiral symmetry breaking due to chiral condensate is observed in zero temperature and

density case. We here extend this study to finite-temperature and finite-density cases by

following the method taken in [10–12], and elucidate how the chiral condensate depends

on temperature and chemical potential. We will find a phase structure consistent with

phenomenologically believed one as in the case of staggered fermions.

A. Effective potential

We first need to derive effective potential of meson fields including scalar one σ from

(4) in the strong-coupling limit (g2 → ∞). We here consider general color number as Nc

for SU(Nc) gauge group and general space-time dimensions as D + 1. For the purpose

we perform the 1-link integral for the gauge field in the D-dimensional spatial part, and

introduce auxiliary fields to eliminate the 4-point interaction as

∫
DU1 · · · DUD exp

[
−

∑

x

D∑

j=1

(
ψ̄xP

+
j Uj(x)ψx+ĵ − ψ̄x+ĵP

−
j U †

j (x)ψx

)]

= exp

[
Nc

∑

x

(
D∑

j=1

trM(x)(P+
j )TM(x + ĵ)(P−

j )T

)
+ O(1/

√
D)

]

=

∫
DσDπ4 exp

[
− Nc

∑

x

(
D

(
(1 + r2)σ2 + (1 − r2)π2

4

)

− D

2
tr

(√
1 + r2σ − i

√
1 − r2π4γ4

)
M(x)

)]
, (5)

with

P±
µ =





(γµ ± irγ4)/2 (µ %= 4)

γ4/2 (µ = 4)
(6)

where we introduce the mesonic field as

Mαβ(x) =
1

Nc
δabψ̄

a,α
x ψb,β

x . (7)

We note that two auxiliary fields σ and π4 are required to get rid of four-fermi interactions

in this case because of the Karsten-Wilczek term. π4 condensate can be a signal of nonzero

effective imaginary chemical potential, and we will discuss on this later. We also note that
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with k̄(a)
n = kn + φa/Nτ − iµ. By integrating the temporal gauge field φa we derive

∫
DU4

∏

"x

A4NcNτ

Nc∏

a=1

(2 cosh NτE + 2 cos (φa − iNτµ))4 =
∏

"x

[
∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

]
,

(14)

Qn =

∫ π

−π

dφ

2π
(2 cosh NτE + 2 cos θ)4 e−inφ, θ = φ − iNτµ. (15)

For Nc = 3 these Qn are explicitly given as

Q0 = 2(8 cosh4 NτE + 24 cosh2 NτE + 3)

Q±1 = 8 cosh NτE(4 cosh2 NτE + 3)e±Nτ µ

Q±2 = 4(6 cosh2 NτE + 1)e±2Nτ µ

Q±3 = 8 cosh NτE e±3Nτ µ

Q±4 = e±4Nτ µ

Q|n|≥5 = 0 (16)

As a result, the effective free energy is given by

Feff(σ,π4; m, T, µ, d3) =
NcD

4

(
(1 + r2)σ2 + (1 − r2)π2

4

)
− Nc log A

−T

4
log

(
∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

)
. (17)

Here we redefine the free energy 4Feff → Feff . The calculation of the determinant part for

Nc = 3 is moved to Appendix A2. We here show only the result as

∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

= 8

(
1 + 12 cosh2 E

T
+ 8 cosh4 E

T

)(
15 − 60 cosh2 E

T
+ 160 cosh4 E

T
− 32 cosh6 E

T
+ 64 cosh8 E

T

)

+64 cosh
µB

T
cosh

E

T

(
−15 + 40 cosh2 E

T
+ 96 cosh4 E

T
+ 320 cosh8 E

T

)

+80 cosh
2µB

T

(
1 + 6 cosh2 E

T
+ 24 cosh4 E

T
+ 80 cosh6 E

T

)

+80 cosh
3µB

T
cosh

E

T

(
−1 + cosh2 E

T

)
+ 2 cosh

4µB

T
. (18)

with

µB = 3µ. (19)
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we dropped next-leading order of O(1/
√

D) expansions in (5), which corresponds to large

D limit. We now have an intermediate form of the effective action from (4),

Seff =
∑

x

[
1

2

(
ψ̄xe

µU4(x)γ4ψx+4̂ − ψ̄x+4̂e
−µU †

4(x)γ4ψx

)
+ ψ̄x (m1 + i(d3 + Dr)γ4) ψx

+NcD
(
(1 + r2)σ2 + (1 − r2)π2

4

)
+

Nc

2
D tr

(√
1 + r2σ − i

√
1 − r2π4γ4

)
M(x)

]
.

(8)

We here defined complex chemical potential as µ ≡ µRe + iµIm. We make fourier transfor-

mation of the temporal direction (µ = 4) by introducing Matsubara modes as,

ψτ,"x =
1√
Nτ

Nτ∑

n=1

eiknτ ψ̃n,"x, ψ̄τ,"x =
1√
Nτ

Nτ∑

n=1

e−iknτ ˜̄ψn,"x, kn =
2π

Nτ

(
n − 1

2

)
. (9)

We here take Polyakov gauge and the link variable in the temporal direction is given by,

U4(%x) =





eiφ1("x)/Nτ

eiφ2("x)/Nτ

. . .

eiφNc ("x)/Nτ




,

Nc∑

a=1

φa(%x) = 0. (10)

with φa defined as components of gauge fields. It enables us to calculate fermionic determi-

nant analytically as,

det D =
∏

"x

Nc∏

a=1

Nτ∏

n=1

det

[(
m +

D

2

√
1 + r2σ

)
1 + iγ4

(
sin k̄(a)

n + d3 + Dr − D

2

√
1 − r2π4

)]

≡
∏

"x

Nc∏

a=1

Nτ∏

n=1

det
[
B + iγ4A sin k̃(a)

n

]

=
∏

"x

Nc∏

a=1

Nτ∏

n=1

(
A2 sin2 k̃(a)

n + B2
)2

=
∏

"x

A4NcNτ

Nc∏

a=1

(2 cosh NτE + 2 cos (φa − iNτµ))4 , (11)

where we define

A2 = 1 +

(
d3 + Dr − D

2

√
1 − r2π4

)2

, B = m +
D

2

√
1 + r2σ, (12)

E = arcsinh

(
B

A

)
= log



B

A
+

√

1 +

(
B

A

)2


 , (13)


