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Dark Sector at the LHC

- Many BSM theories introduce a dark sector through an
additional U(1), gauge symmetry

- Can use different portals to search for this sector at LHC:
vector, neutrino, photon, Higgs

standard model
SU(3).xSU(2) xU(1)y
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Higgs Portal

1.

Higgs portal introduces:

New gauge field with kinetic mixing € with hypercharge
gauge boson

In the case of broken U(1), symmetry, a new Higgs with
mass mixing Kk with SM Higgs, leading to new Higgs
doublet and mass mixing d between SM Z and dark
sector

- In the € >> K case, kinetic mixing dominates, mass of

new particle is higher, interpreted as a dark Z (Z,) that
couples to the dark charge



Higgs Portal at ATLAS

- Can infer the existence of Z, through:
1. Deviations of SM predicted Drell-Yan rates
2. Higgs decays through exotic intermediate states

- In particular, allows for new processes with 4l final states:
H—77Z,—4lland H > 7,7, — 4l
- Not ruled out by electroweak constraints on ¢
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Analysis Strategy

- Apply event selection:
- Run 1: Same event selectionas [ — ZZ* — 4] analysis
- Run 2: Selection will be further optimized for ZZd analysis

- Look at m,, spectrum, apply LH fit to search for narrow

peak about featureless SM background
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Run 1 Analysis

- Simulated signal with 771; 15-55 GeV in 5 GeV steps
(interpolated between steps) from ggF H using Hidden
Abelian Higgs Model (Z, is on shell)

- Relevant backgrounds (H — ZZ" — 41,7ZZ" — 41,Z + jets, ttbar)
simulated and normalized to data (or SM cross section)

- Dominant uncertainties from lepton ID, background
normalizations

Channel 7 tt + Z-+jets Sum Observed H — 4

4u 3.1+0.024+04 0.6£0.044+0.2 3.7£0.04+0.6 12 8.3+0.044+0.6
4e 1.3£0.02£0.5 08+0.07+£04 2.14+0.07+0.9 9 6.9 4+0.074+0.9
2u2e 1.4+£0.01£03 1.2+0.10£04 2.64+0.10+0.6 7 4.440.10 & 0.6
2e2 214£0.024+£0.3 0.6£0.04£0.2 2.7+0.10£0.5 8 5.34+0.04 0.5
all 78+£0044+1.2 32+£01£1.0 11.14+0.1+£1.8 36 24.9+0.1+1.8




Run 1 Results

- No significant deviations from SM expectations ®
- Can extract limits on p from LH fits
- Using R, = P_ can extract limits on Rg
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Run 1 Results

- By assuming SM cross section of H — ZZ — 41, can
extract limits on ¢

- By approximating BR(Zd — 21) can extract limits on 0
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Applications

- SM predictions for the running of weak mixing angle with
Q2 does not match data

- Z4 with mass in our search range could improve
agreement
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Run 2 Improvements

- Optimize the Higgs mass window for ZZ; decays (in
progress)

- Consider lifetime of Z, (possible displaced vertices)

- Consider lower m, (in progress)
- Aided by lowering lepton ID threshold

- Improve event selection and signal yield using machine
learning



Machine Learning

- Machine Learning allows algorithms to ‘learn’ parameters
without being explicitly programed

- Can be used for classification, dataset generation, high
level vector space transformations, unsupervised
grouping, taking over the world...

- Already used in a few LHC analyses, triggers,
reconstructions, and IDs

- Usually relatively simple
algorithms: LHs and BDTs




. . S
Deep Neural Networks

- Layered graph of multi-dimensional linear transformations

- Classification error is back-propagated using gradient
descent based on cost function
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- Able to learn highly abstracted representations of data
and extract high level patterns

Input Hidden Output
layer layer layer

Input #1

Input #2 N
{.!f_'_ - Output
Input #3 — )

Input #4 — -

/ ¥ X X\ Y NN
" ‘ ' ‘ “



Deep Neural Networks with Autoencoders

- NN performance is highly hyperparameter dependent
- One way to mitigate this is unsupervised pre-training
- Autoencoders create a “bottleneck of dimensionality”

- Goal is to accurately encode and decode information at
each layer according to ¢(x) = f(W,x+b,) and

Y(x)=gW,p(x)+Db,)
- Encoder weights are used as preliminary NN weights

Bottleneck Hidden Layer

Output layer

Input
‘ recostruct input
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Machine Learning for Z, Search

- Two options for applying ML to this analysis:
1. Use ML to optimize the H — ZZ"~ — 4] event selection
- Goal to increase statistics in m,, distribution

2. Use H — ZZ, — 4l trained algorithm after/instead of
H — 77" — 4] event selection
- Goal to resolve peak in m,, distribution

- Would help remove remaining non-resonant ZZ* background and
H — 77" — 4] background outside of Z, mass range

- More difficult because processes have identical kinematics in 7. =m,
range.

3. Can combine both techniques

- Option 1 currently being studied with pre-trained DNNs,
have demonstrated clear improved event selection
efficiency (for Run 1 data)



Conclusions

- Search for a dark sector vector boson in the intermediate
mass range where kinetic mixing dominates is well
motivated and accessible at the LHC

- Run 1 found no significant excess in Z* spectrum, set
Improved limits on Rz and mixing parameters

- Machine learning is a promising way to increase search
sensitivity in Run 2

- Many thanks to Daniela, Keith, Luke de Olivera

- This work is supported by the National Science
Foundation Graduate Research Fellowship
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Higgs to 4| Standard Event Selection

LEPFTONS AND JETS REQUIREMENTS
ErecrRons
Loose Likelihood quality electrons with hit in innermost layer, Ey > 7 GeV and ] < 2.47
Muons
Loose identification |if < 2.7
Calo-tagged muons with py > 15 GeV and |p| < 0.1
Combined, stand-alone (with ID hits if available) and segment tagged muons with pr > § GeV
Jers
anti-k; jets with pr > 30 GeV, 5] < 4.5 and passing pile-up jet rejection requirements
Event SeLECcTION

Quansurter  Require at least one quadruplet of leptons consisting of two pairs of same flavour
SeLECTION opposite-charge leptons fulfilling the following requirements:

pr thresholds for three leading leptons in the quadruplet - 20, 15 and 10 GeV

Maximum of one calo-tagged or standalone muon per quadruplet

Select best quadruplet to be the one with the (sub)leading dilepton mass

(second) closest the Z mass

Leading dilepton mass requirement: 50 GeV < mj) < 106 GeV

Sub-leading dilepton mass requirement: 12 < mag < 115 GeV

Remove quadruplet if alternative same-flavour opposite-charge dilepton gives my, < 5 GeV

AR(E, £') > 0.10 (0.20) for all same(different)-flavour leptons in the quadruplet
IsoLamon Contribution from the other leptons of the quadruplet is subtracted

Muon track isolation (AR < 0.30); Zpy/pr < 0.15

Muon calorimeter isolation (AR = 0.20): ZEy/py < 030

Electron track isolation (AR < 0.20) : ZEy/Ey < 0.15

Electron calorimeter isolation (AR = 0.20) : XE1/ET < 0.20
IMPACT Apply impact parameter significance cut to all leptons of the quadruplet.
ParameTer  For electrons : |dy/og,| < 5
SicniFicance  For muons @ |dy /oy, | < 3
VERTEX Require a common vertex for the leptons
Seecrion  y*/ndof < 6 for 4u and < 9 for others.
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M4 Distribution Run 1
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Deriving Limit Setting Equations

R — p X py X n(H — 4¢)
B pxuy xn(H = 4€) + C X uy x n(H — 4¢)
p
=—, 4
2+ C (4)

where C is the ratio of the products of the acceptances
and reconstruction efficiencies in H - ZZ,; — 4/ and
H — ZZ" — 4¢ events:

_ Azz, X ez,

C= :
Azz X €7

(5)

Setting Ry limits from LH
parameters

From Eq. (2) and for my, < (my — my)

BR(H—>ZZ;—4¢) Ry
BR(H - ZZ* - 4¢) (1-Ryp)’
_T(H - 2z,)
Lsm
BR(Z* - 2¢) x BR(Z,; — 2¢)
BR(H —» ZZ* — 4¢) '

(6)

where Iy, is the total width of the SM Higgs boson and
T(H - ZZ,) < T'gy. From Egs. (4), (A.3) and (A.4) of
Ref. [7], T'(H = ZZ;) ~&*. It therefore follows from
Eq. (6), with the further assumption m3 < (mj,—m3) that

Ry
=& xBR(Z, — 2¢
y BR(Z* - 2¢) xf(mz'*)
BR(H - ZZ* - 4¢)  Tsy
_ 1 (mf—my)
f(mzd) o 167 v2m?{ ’ (7)

Deriving limits on mass mixing from Ry



M,, Spectrum from Run 2
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