
 Recent progress in multi GPU
conjugate gradient convertor with

staggered fermion

Hyung-Jin Kim
Brookhaven National Laboratory

New Horizons for Lattice Gauge Theory Computations
at BNL 2012

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

1. GPU computation for HPC

- GPGPU: General Purpose computation using GPU.

- CUDA : C extension(API) for GPGPU by nVIDIA

- Open CL : Standard C extension for GPGPU

2. Conjugate Gradient algorithm

Iterative method for solving linear algebraic equations : b = Ax

3. CG implementation on CUDA

Introduction

Why use the GPU ?

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

1. If money is not a problem~?

- Just buy a good super computer

High performance computing

 IBM BlueGene Q Super computer

Why use the GPU ?

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

2. Physicist in Korea?

- No money.

- Find alternative way

- GPU Supercomputing !
- Cost & energy effective

- Hard to develop

High performance computing

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

 David 1, 2 GPU cluster

- Intel core i7 920 , 32 node

- 32 x 2 x GTX 480 GPUs

- 20Gbps infiniband network

- Theoretical performance

SP : 1.34 TFLOPS / GPU

DP : 168 GFLOPS / GPU

Bandwidth : 177.4 GB / sec / GPU

 David 3 GPU cluster

- Intel core i7 950 , 8 node

- 8 x 2 x GTX 590 GPUs

- 40Gbps infiniband network

Machine Environment in SNU

David Cluster
64x GTX 480 GPUs + 16x GTX 590 GPUs

20Gb 32nodes + 40Gb 8 nodes Infiniband

CG Algorithm

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

Update
process

r : residual vector
d : directional vector
ε : tolerance
Ax(or Ad): Dirac operation

Initial Condition

• Conjugate gradient operation

for (i = 0; i < Ndim and δnew > ε2δ0; i++){
 Tmp = Ad
 α = δnew / d†Tmp
 r = r - αTmp
 δold = δnew , δnew = r†r
 x = x + αd
 β = δnew / δold
 d = r + βd
}

r = b - Ax
d = r
δnew = r†r
δ0 = δnew

Staggered Dirac Operator
2. Dirac operation

 Dirac equation h = Aχ ; A ≡ −𝐷2 + 𝑚2

𝐷𝑥,𝑦 = 𝑈µ 𝑥 δ𝑦,𝑥+µ − 𝑈µ 𝑥 − µ δ𝑦,𝑥−µ

⇒ D χ(x) = Σ Uµ(x)χ(x+μ) - Uµ(x-μ)χ(x-μ)

 6 [χ(x)] + 8 x 6 [χ(x±μ)] + 8 x 18 [Uµ(x)] = 198 : 792 bytes(SP), 1584 bytes(DP)

 Uµ(x)Χ(x+μ) part has 72 floating point calculations

→ 8 x 72 = 576 floating point calculations per site

 For 28^3 x 96 lattice, there are 106 of lattice even(or odd) sites

→ 0.61 Giga floating point calculations (Total 1 CG iteration = 0.624 x 109)

→ 1.55 Giga bytes(DP) of data transfer : Memory IO is major bottle neck !

𝑥ʺ1
𝑥ʺ2
𝑥ʺ3

𝑥𝑥𝑥
𝑥𝑥𝑥
𝑥𝑥𝑥

 = –
𝑎𝑥1 𝑎𝑥𝑥 𝑎𝑥𝑥
𝑏𝑥𝑥 𝑏𝑥𝑥 𝑏𝑥𝑥
𝑐𝑥𝑥 𝑐𝑥𝑥 𝑐𝑥𝑥

𝑥𝑥
𝑥𝑥
𝑥𝑥

𝑎𝑥 𝑎𝑥 𝑎𝑥
𝑏1 𝑏𝑥 𝑏𝑥
𝑐𝑥 𝑐𝑥 𝑐𝑥

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

C & CUDA Code Comparison

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

...
for(x = 0;x < Nx ;x++)
for(y = 0;y < Ny ;y++)
for(z = 0;z < Nz ;z++)
for(t = 0;t < Nt ;t++)
{
 for(μ = 0; μ < 4 ; μ++)
 {
 ...
 if(cur_l[mu] == nx[mu]-1)
 ...
 else
 ...
 uDotXPlus(sol, U, src);
 ...
 uDagDotXMinus(sol, U, src);
 ...
 }
}

CPU code(CPS Lib.) CUDA code
...
position = blockIdx.x*blockDim.x+
 threadIdx.x;
Get_location(cur_l, position);
...
for(μ= 0; μ < 4; μ++)
{
 ...
 if(cur_l[mu] == nx[mu]-1)
 ...
 else
 ...
 uDotXPlus(sol, U, src);
 ...
 uDagDotXMinus(sol, U, src);
 ...
}

 Initial performance is
0.97 GFLOPS per 1 GPU(DP).

 GPU is only twice faster than
CPU code (0.46GFLOPS, DP).

_

CUDA Optimization(1)
1. Coalesced memory access

2. Using fast on-chip memory(register & shared memory)

- Increase data reusability

3. Adjust the code for CUDA architecture

- Higher CUDA occupancy

- Reduce the branch code

4. Data compression

- SU(3) data reconstruction(8, 10, 12 parameter)

5. Using mixed precision

- Load balancing between single precision and double precision calculation

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

CUDA Optimization(2)

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

 Coalesced Memory Access

- 64 bit memory access channel
- Multiple data accesses by Warp(32 threads)

 Using Fast On-chip Memory (register & shared memory)

- Output vector is accessed 6 times
- Input vectors are accessed 2 times

𝑥ʺ1
𝑥ʺ2
𝑥ʺ3

𝑥𝑥𝑥
𝑥𝑥𝑥
𝑥𝑥𝑥

 = –
𝑎𝑥1 𝑎𝑥𝑥 𝑎𝑥𝑥
𝑏𝑥𝑥 𝑏𝑥𝑥 𝑏𝑥𝑥
𝑐𝑥𝑥 𝑐𝑥𝑥 𝑐𝑥𝑥

𝑥𝑥
𝑥𝑥
𝑥𝑥

𝑎𝑥 𝑎𝑥 𝑎𝑥
𝑏1 𝑏𝑥 𝑏𝑥
𝑐𝑥 𝑐𝑥 𝑐𝑥

CUDA Optimization(3)

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

 Data Reconstruction (Data Compression)

- In most application, The performance of GPU application is bounded to

memory bandwidth

- Need to load balancing between calculation and data accessing

- Data has SU(3) symmetry, so this property can be used for data

compression

- 8, 10, 12 parameter SU(3) reconstructions

- Each method needs different optimization

- 10 parameter method is chosen to production

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

CUDA Optimization(4)
 Using Mixed Precision

- Performance gap between Single Precision and Double Precision in GPU

- Tesla : DP / SP = 1/2, Geforce : DP / SP = 1/8, 1/12 or 1/24 !

- To retrieve this performance discrepancy, mixed precision method can be

used

- The main idea of iterative refinement is using two types of iterative

loops to get the true solution value.

- At first, by using the single precision iteration, we can approach fast

to the roughly estimated solution

- Next, double precision or more precise iteration can be used to get

the more accurate solution

MPI Communication
 Practical multi GPU performance

- Network IO (include PCI-E bus IO) : bottle-neck

- MPI(mvapich) is used for multi GPU implementing

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

Lattice data
at each node

… …

Each node collects
boundary data
on GPU Memory.

Download GPU data on host memory

cudaMemcpy(DeviceToHost)

MPI data transfer
Data send and receive
are done concurrently

by 4 direction

CPU Mem

Upload the
transferred Data
from host to
device

GPU

Communication Optimization(1)
1. Reduce the size of surface data

2. Reduce the unnecessary data transfer

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

CPU Mem

Lattice Data then

MPI Comm.

Lattice data
at each node

Both data are in
the same GPU
memory space

No need to be
copied or
transferred

Communication Optimization(2)
3. Use GPU direct technology

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

GPU direct 2.0
Key features

- GPU direct 1.0

- GPU direct Access

Possible only in Tesla GPU

- GPU direct Transfer

is now implementing

- It may give ~20%

enhancement on network

GPU1 GPU2

Node1

GPU1 GPU2

GPU direct 1.0

GPU direct 2.0 Node2

Performance (1)
 Total CG Performance(exclude network, used 4 GPU, 2896

lattice)

 Used GTX 480 : bandwidth = 118GBytes/sec (measured),

SP FLOPS = 1344 GF (ideal) , DP FLOPS = 168 GF (ideal)

 For 1 Dirac operation,

In double precision, it takes 2 x 2.77 ms
→ 576 x 28 x 28 x 28 x 96 /4 /2 / 0.00277

 = 55 GFLOPS

In single precision, it takes 2 x 1.04 ms
→ 576 x 28 x 28 x 28 x 96 /4 /2 / 0.00104

 = 145 GFLOPS

 Total mixed iteration = 30468(SP) + 52(DP)

Data loading
2.0ms, measured

GPU calc.
(1.6ms, ideal)

Double Precision
Total 2.77ms (measured)

Data loading
1.0ms,measured

Single Precision
Total 1.04ms (measured)

GPU calc.
(0.2ms, ideal)

Enhanced
 166%

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

Performance (2)
 Time table of total sequence : For 1 D χ(x) operation,

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

GTX 480, 590
 Optimized Result

 Double
Precision

(ms)

Single
Precision

(ms)

GPU calculation time 2.77 1.04

boundary data collect 0.5 0.38

Memcpy GPU to CPU 1.3 0.25

MPI communication 2.1 0.6

Memcpy CPU to GPU 1.3 0.26

Total Comm. time ~5.5 ~1.5

Total time ~8.3 2.6

GFLOPS(measured) 18.8 44

HISQ action
 We are also implemented HISQ action to our CG invertor

- by Boram Yoon(in SNU)

 In single precision, for 1 Dirac operation, it takes 2 x 1.98 ms

- 2 x 576 x 28 x 28 x 28 x 96 /6 /2 / 0.00198 = 102 GFLOPS

- Most of times are also used for data loading

 Include network comm., real performance is 18.2GFLOPS

- Boundary data size is doubled!

- Optimization is still in progress

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

Summary
 CUDA version of CG invertor is successfully implemented on CPS

library

 For better performance, many optimization method were applied

 Network communication can be optimized a little bit more

 In mixed precision, CUDA version of staggered CG invertor shows

44 GFLOPS / GPU of performance

 We are also preparing HISQ CG invertor

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012

	 Recent progress in multi GPU conjugate gradient convertor with staggered fermion
	Introduction
	Why use the GPU ?
	Why use the GPU ?
	Machine Environment in SNU
	CG Algorithm
	Staggered Dirac Operator
	C & CUDA Code Comparison
	CUDA Optimization(1)
	CUDA Optimization(2)
	CUDA Optimization(3)
	CUDA Optimization(4)
	MPI Communication
	Communication Optimization(1)
	Communication Optimization(2)
	Performance (1)
	Performance (2)
	HISQ action
	Summary

