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1. GPU computation for HPC 

- GPGPU: General Purpose computation using GPU. 

- CUDA : C extension(API) for GPGPU by nVIDIA 

- Open CL : Standard C extension for GPGPU 

2. Conjugate Gradient algorithm 

Iterative method for solving linear algebraic equations :  b = Ax 

3. CG implementation on CUDA  

Introduction 



Why use the GPU ? 

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 

1. If money is not a problem~? 

- Just buy a good super computer 

High performance computing 

 

                                   IBM BlueGene Q Super computer 



Why use the GPU ? 
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2. Physicist in Korea? 

- No money.  

- Find alternative way 

- GPU Supercomputing ! 
- Cost & energy effective 

- Hard to develop 

High performance computing 
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 David 1, 2 GPU cluster 

- Intel core i7 920 , 32 node 

- 32 x 2 x GTX 480 GPUs 

- 20Gbps infiniband network 

- Theoretical performance 

SP : 1.34 TFLOPS / GPU 

DP : 168 GFLOPS / GPU 

Bandwidth : 177.4 GB / sec / GPU 

 David 3 GPU cluster 

- Intel core i7 950 , 8 node 

- 8 x 2 x GTX 590 GPUs 

- 40Gbps infiniband network 

Machine Environment in SNU 

David Cluster 
64x GTX 480 GPUs + 16x GTX 590 GPUs 

20Gb 32nodes + 40Gb 8 nodes Infiniband 



CG Algorithm 
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Update 
process 

r : residual vector 
d : directional vector 
ε : tolerance 
Ax(or Ad): Dirac operation 

Initial Condition 

• Conjugate gradient operation 

for (i = 0; i < Ndim and δnew > ε2δ0; i++){ 
 Tmp = Ad 
 α = δnew / d†Tmp 
 r = r - αTmp 
 δold = δnew  ,       δnew = r†r 
 x = x + αd 
 β = δnew / δold 
 d = r + βd   
} 

r = b - Ax 
d = r  
δnew = r†r  
δ0 = δnew 



Staggered Dirac Operator 
2. Dirac operation  

 Dirac equation h = Aχ  ;      A ≡ −𝐷2 + 𝑚2 

𝐷𝑥,𝑦 = 𝑈µ 𝑥 δ𝑦,𝑥+µ − 𝑈µ 𝑥 − µ δ𝑦,𝑥−µ   

⇒   D χ(x) = Σ Uµ(x)χ(x+μ) - Uµ(x-μ)χ(x-μ) 

 

 

 6 [χ(x)] + 8 x 6 [χ(x±μ)] + 8 x 18 [Uµ(x)] = 198 : 792 bytes(SP), 1584 bytes(DP) 

 Uµ(x)Χ(x+μ) part has 72 floating point calculations  

→ 8 x 72 = 576 floating point calculations per site 

 For 28^3 x 96 lattice, there are 106 of lattice even(or odd) sites  

→ 0.61 Giga floating point calculations (Total 1 CG iteration = 0.624 x 109 ) 

→ 1.55 Giga bytes(DP) of data transfer : Memory IO is major bottle neck !  
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C & CUDA Code Comparison  
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... 
for(x = 0;x < Nx ;x++) 
for(y = 0;y < Ny ;y++) 
for(z = 0;z < Nz ;z++) 
for(t = 0;t < Nt ;t++) 
{ 
   for( μ = 0; μ < 4 ; μ++) 
   { 
      ... 
      if( cur_l[mu] == nx[mu]-1 ) 
         ... 
      else 
         ... 
      uDotXPlus(sol, U, src); 
      ... 
      uDagDotXMinus(sol, U, src); 
      ... 
   } 
} 

CPU code(CPS Lib.) CUDA code 
... 
position = blockIdx.x*blockDim.x+ 
   threadIdx.x; 
Get_location(cur_l, position); 
... 
for( μ= 0; μ < 4; μ++) 
{ 
   ... 
   if( cur_l[mu] == nx[mu]-1 ) 
      ... 
   else 
      ... 
   uDotXPlus(sol, U, src); 
   ... 
   uDagDotXMinus(sol, U, src); 
   ... 
}  

 
 

 Initial performance is  
0.97 GFLOPS per 1 GPU(DP).  

 GPU is only twice faster than 
CPU code (0.46GFLOPS, DP). 

_ 



CUDA Optimization(1) 
1. Coalesced memory access 

2. Using fast on-chip memory(register & shared memory) 

- Increase data reusability 

3. Adjust the code for CUDA architecture 

- Higher CUDA occupancy 

- Reduce the branch code 

4. Data compression 

- SU(3) data reconstruction(8, 10, 12 parameter) 

5. Using mixed precision  

- Load balancing between single precision and double precision calculation 
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CUDA Optimization(2) 
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 Coalesced Memory Access 
 
 
 
 
 
 
 

- 64 bit memory access channel 
- Multiple data accesses by Warp(32 threads)  

 Using Fast On-chip Memory ( register & shared memory ) 
 
 
 

- Output vector is accessed 6 times  
- Input vectors are accessed 2 times  
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CUDA Optimization(3) 
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 Data Reconstruction ( Data Compression ) 

- In most application, The performance of GPU application is bounded to 

memory bandwidth 

- Need to load balancing between calculation and data accessing 

- Data has SU(3) symmetry, so this property can be used for data 

compression  

- 8, 10, 12 parameter SU(3) reconstructions 

- Each method needs different optimization 

- 10 parameter method is chosen to production 
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CUDA Optimization(4) 
 Using Mixed Precision 

- Performance gap between Single Precision and Double Precision in GPU 

- Tesla : DP / SP = 1/2,     Geforce : DP / SP = 1/8, 1/12 or 1/24 ! 

- To retrieve this performance discrepancy, mixed precision method can be 

used 

- The main idea of iterative refinement is using two types of iterative 

loops to get the true solution value.  

- At first, by using the single precision iteration, we can approach fast 

to the roughly estimated solution 

- Next, double precision or more precise iteration can be used to get 

the more accurate solution 

 



MPI Communication 
 Practical multi GPU performance 

- Network IO ( include PCI-E bus IO) : bottle-neck 

- MPI(mvapich) is used for multi GPU implementing 
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Lattice data 
at each node 

… … 

Each node collects  
boundary data 
on GPU Memory. 

Download GPU data on host memory 

cudaMemcpy(DeviceToHost) 

MPI data transfer 
Data send and receive 
are done concurrently 

by 4 direction 

CPU Mem 

Upload the 
transferred Data  
from host to  
device 

GPU 



Communication Optimization(1) 
1. Reduce the size of surface data 

 

2. Reduce the unnecessary data transfer 
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CPU Mem 

Lattice Data then 

MPI Comm. 

Lattice data 
at each node 

Both data are in 
the same GPU 
memory space 

No need to be 
copied or 
transferred  



Communication Optimization(2) 
3. Use GPU direct technology 
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GPU direct 2.0 
Key features 

- GPU direct 1.0 

- GPU direct Access 

Possible only in Tesla GPU 

- GPU direct Transfer 

is now implementing 

- It may give ~20%  

enhancement on network 

GPU1 GPU2 

Node1 

GPU1 GPU2 

GPU direct 1.0 

GPU direct 2.0 Node2 



Performance (1) 
 Total CG Performance(exclude network, used 4 GPU, 2896 

lattice) 

 Used GTX 480 : bandwidth = 118GBytes/sec (measured),  

SP FLOPS = 1344 GF (ideal) ,  DP FLOPS = 168 GF (ideal) 

 For 1 Dirac operation, 

In double precision, it takes 2 x 2.77 ms 
→  576 x 28 x 28 x 28 x 96 /4 /2 / 0.00277 

 = 55 GFLOPS 

In single precision, it takes 2 x 1.04 ms 
→  576 x 28 x 28 x 28 x 96 /4 /2 / 0.00104 

 = 145 GFLOPS 

 Total mixed iteration = 30468(SP) + 52(DP) 

Data loading 
2.0ms, measured 

GPU calc.  
(1.6ms, ideal) 

Double Precision 
Total 2.77ms (measured) 

Data loading 
1.0ms,measured 

Single Precision 
Total 1.04ms (measured) 

GPU calc.  
(0.2ms, ideal) 

Enhanced 
   166%  
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Performance (2) 
 Time table of total sequence : For 1 D χ(x) operation, 
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GTX 480, 590  
 Optimized Result 

 Double 
Precision 

(ms) 

Single 
Precision 

(ms) 

GPU calculation time 2.77 1.04 

boundary data collect 0.5 0.38 

Memcpy GPU to CPU 1.3 0.25 

MPI communication 2.1 0.6 

Memcpy CPU to GPU 1.3 0.26 

Total Comm. time ~5.5 ~1.5 

Total time ~8.3 2.6 

GFLOPS(measured) 18.8 44 



HISQ action 
 We are also implemented HISQ action to our CG invertor 

- by Boram Yoon(in SNU)  

 In single precision, for 1 Dirac operation, it takes 2 x 1.98 ms 

- 2 x 576 x 28 x 28 x 28 x 96 /6 /2 / 0.00198 = 102 GFLOPS 

- Most of times are also used for data loading  

 Include network comm., real performance is 18.2GFLOPS 

- Boundary data size is doubled! 

- Optimization is still in progress 
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Summary 
 CUDA version of CG invertor is successfully implemented on CPS 

library 

 For better performance, many optimization method were applied 

 Network communication can be optimized a little bit more 

 In mixed precision, CUDA version of staggered CG invertor shows 

44 GFLOPS / GPU of performance 

 We are also preparing HISQ CG invertor 
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