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Overview

This talk: dark matter + dark energy connections
(“kination-dominated quintessence”)

at LHC/ILC

in the context of low energy supersymmetry

Based on:

Chung, Everett, Kong, Matchey, to appear

Chung, Everett, Matchey, arXiv:0704.3285 [hep-ph]



Connecting Collider Physics and Cosmology

Desired collider connection w/cosmology:
understand dark energy , dark matter

Dark energy:

cosmological constant: ~ CC problem sensitive to entire
spectrum, couplings, SUSY breaking

quintessence:  scalar field @ w/ at most
gravitational strength couplings to SM

Extremely difficult to probe directly at colliders!



Dark matter connection

Contrast: direct collider probes of dark matter

WIMP hypothesis (thermal relic X ): motivated in
SUSY models (LSP), extra dim’s (LKP), ...

Cosmological abundance depends on:

e couplings and masses  (collider measurements)

® freezeout 1'4 < H (cosmology)

Indirect dark energy connection:

consider usual thermal WIMP dark matter, but
nonstandard cosmological expansion (quintessence)



Dark matter and Dark Energy connection

If dark energy is quintessence:
freeze out process can be affected!

® energy density can dominate at freeze out: 7y ~ 1 GeV
but must be small (<20%) by BBN: 7o ~ 107° GeV
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Kination domination and DM abundance
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(), increased from standard scenario! (up to 10° enhancement)



Kination Domination and Neutralino Dark Matter

Scenario implies:

e Mismatch b/w collider LSP and direct/indirect search data
Implications for favored MSSM parameter space:

near resonances: 21, = Mint
also coannihilations (not as effective)

Resurrect wino, higgsino dark matter scenarios

previous studies: LHC probes of kination domination  Profumo,Ulio ‘03

e Good news for direct/indirect dark matter searches
larger (0cav) for fixed Q52



Current study: ILC probes of dark energy

(w/Chung, Kong, Matchey, to appear)
Goal:

precision to which LHC/ILC can probe kination scenario

Procedure:

“recycle” ILC study points of Baltz, Battaglia, Peskin, Wizansky

(mMSUGRA, masses in GeV) hep-ph/0602187

bulk LCCIl mg =100, M, 5 = 250,tan 8 = 10, Ay = —100,n >0 LCCI’ M,/ =150

focus LCC2 mgy =3280, M/, = 300,tan 3 = 10, 4g = 0,2 > 0 LCC2" o = 3360

stau LCC3 mg =213, M,/ =360,tan 3 =40, Ao =0, >0 LCC3’ mo = 205
A funnel LCC4 mo =380, M/ = 420,tan 3 =53, Ag =0, u > 0 LCC4’ mo = 950
tan G = 50
p <0

Future work: beyond mSUGRA, other scenarios...



Stau coannihilation region: mSUGRA LCC3 study point
with adjusted Mg
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Stau coannihilation region: mSUGRA LCC3 study point
with adjusted My
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mSUGRA LCC2 study point
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A-funnel study point mSUGRA LCC4 study point
with adjusted parameters
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A-funnel region study point  mSUGRA LCC#4 study point
with adjusted parameters
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A-funnel region study point

mSUGRA LCC4 study point
with adjusted parameters
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Bulk region study point mSUGRA LCCI study point
with adjusted M /2
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1 1 mSUGRA LCCI study point
Bulk region study point with achuseed Mo
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LHC not precise enough to resolve Am, near resonances

ILC better!



Inflationary Embedding of Kination
Domination Scenarios

(Chung, Everett, Matchev, 0704.3285 [hep-ph]

energy dominance
+coherence

Our scenario: inflaton = quintessence field

/

> 6, gravitational reheating
Tend

o . . 1%
kick it at end of inflation v2Mp 72

Obtain relation between %cﬁ[ﬂ and pr
Vo~ (4 x 102GeV )iy 2

ge \ —1/2
160)
upper bound for fixed 7o !

Prediction: negligible inflationary tensor perturbations

many issues yet to explore!  (Dan’s talk)



Conclusions and Outlook

® Seeking collider-cosmology connections:

important goal in LHC/ILC era!

® Kination-dominated quintessence:

® cnhancement mechanism for DM abundance

® |LC significant probe of such cosmological scenarios

® Many issues yet to be explored: (Dan’s talk)

® TeV physics implications, cosmological phenomena

® Option if mismatch of collider+cosmo data

® May be best probe of dark energy at co

liders!



