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Short-baseline neutrinos

- Start with two neutrino oscillation

P(o. — B)=sin’(260)sin’ (M)
- L/E is the experimental parameter we set

—For long-baseline like NOVA, E ~ 2 GeV,
L ~ 810 km for L/E ~ 400 km/GeV
—For short-baseline like MiniBooNE, E ~ 0.8 GeV,
L ~ 0.5 km for L/E ~ 0.6 km/GeV
- Different baselines can bring out different
physics, such as searches for sterile neutrinos
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LSND Anomaly

- The motivation for MicroBooNE
begins with LSND

- LSND observed a v, appearance

signal in a v, beam 8 1rsf T
- Excess of 87.9 + 23.2, for 3.80 57 e
P(VM —V,)= sin”(26)sin’ (1 27LAm ) =0.245+0.081% 7.5 f
L/E — defined by experimental setup an Zam
6 — mixing angle i B 2
Am? — oscillation frequency OO0 0T e imetersmiav)

MicroBooNE B. Carls, Fermilab 3




LSND Anomaly

- The motivation for MicroBooNE
begins with LSND

Stay tuned for Roxanne Guenette’s talk about

Fermilab’s short-baseline program.
2 10 | o
PV, —Vv,)= sin®(26)sin’ (1 LA ) =(0.245+0.081% 7.5
L/E — defined by experimental setup "
6 — mixing angle o . s
Am? — oscillation frequency = i
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R ——————
From LSND to MiniBooNE

- MiniBooNE, a mineral oil based Cherenkov detector, was designed to
observe or refute the LSND
- Looked for v, in a v, beam off of the Fermilab Booster Neutrino Beam

- MiniBooNE, like all Cherenkov detectors, had trouble distinguishing ° to
vy (background, if a Yy was missed) from a single electron (signal)

0,0 - -
v.n—=v nu (r” —yy) v.n—e p vn—=>up
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-
MiniBooNE Excess

- MiniBooNE’s oscillation analysis saw an excess in neutrino and
antineutrino modes, 240.0 + 62.9 events for 3.80

- Excesses appear in the region 0.2-0.475 GeV, where NC n° and processes
producing a single photon dominate

- Problem is, a single photon looks just like an electron!
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E—
The operation of a LArTPC

E Field
—
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E—
The operation of a LArTPC

E Field
—
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E—
The operation of a LArTPC

E Field
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E—
The operation of a LArTPC
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E—
The operation of a LArTPC

.
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E—
The operation of a LArTPC
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E—
The operation of a LArTPC
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.
We need a few things to make it work

- First, we need high-voltage for drifting electrons

- Second, we need clean liquid argon

—Need a low-level of electronegative molecules like oxygen and
water that eat up the drift electrons

—Need low-level of nitrogen since it quenches the scintillation
process and absorbs the scintillation light

MicroBooNE B. Carls, Fermilab



MicroBooNE Detector

- 60 ton fiducial volume (of 170
tons total) liquid Argon TPC

- TPC consists of 3 planes of
wires; vertical Y, +60° from Y

forUand V

- Array of 32 PMTs sit behind
TPC wires

- Purification and cryogenic

system capable of achieving
<100 ppt O, and < 2 ppm N,

MicroBooNE B. Carls, Fermilab
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MicroBooNE Detector

- MicroBooNE has several
R&D goals

—Cold front-end electronics
which reside inside the vessel

—2.56 m drift distance across the
TPC, longest done in a beam
experiment

—G@Gas purge of cryostat instead of
vessel evacuation
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We get most of our neutrinos from the
Booster Neutrino Beam at Fermilab

Booster ‘ et

Magnetic Decay

focusing horn region Absorber 450 m

dirt

Not to scale!
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.
We get most of our neutrinos from the

Booster Neutrino Beam at Fermilab

- Driven by 8 GeV protons hitting a
beryllium target for a mean
neutrino energy of 0.8 GeV

- Will provide MicroBooNE with
the same L/E (oscillation

parameter experiments set) to
that of MiniBooNE

- Well known beam, already run
for a decade, allows focus to be | e
placed on understanding Energy (GeV)
detector
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electron vs gamma Reco
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LArTPCs are excellent for distinguishing electrons from photons using
dE/dx and event topologies
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e
Neutrino Cross Sections

- -
- N
T

- Recently received a lot of attention, crucial
for v oscillations

- v cross sections are historically not well
known in the energy range we care about

- In the 1 GeV range, driven by results from
MiniBooNE, MicroBooNE will probe the

neutrino

o e

o o o
3

v cross section / E‘)s(10':1'8 cm?/ GeV)
©

o N

e_accelerator—based E, (GeV) )
- v oscillations exact same energy region
> 0.4F
035 ‘ —LArTPC provide great resolution for position and
g 03 momentum in neutrino detectors
u

—Possible to reconstruct complicated topologies
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s —High statistics mean measurements likely
Y systematically limited
10
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First things first though, we need to
understand our detector

 First cross section and lEField
oscillation analyses will e e
take some time

« In gettlng ready, we can do Muon track affected by recombination
physics along the way

—Recombination \</\/

—Diffusion
—Lifetime measurements
—Field distortions

at+b+c<l<a+b+c+d

Multiple Coulomb Scattering

MicroBooNE B. Carls, Fermilab 21




Preparing the Detector for Data

B. Carls, Fermilab



e
On June 23, 2014, we moved the

cryostat across site

electronics, TPC (including wires), and
PMTs (not full of argon yet though)
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Insulated, racks moved in, and everything
cabled up

MicroBooNE B. Carls, Fermilab 24



We need to get clean argon

- We have two primary
requirements for operation
—Need < 2 ppm nitrogen
—Need < 100 ppt oxygen equivalent
contamination (water and oxygen)
- Few steps to get there

1. Start with “piston” purge with Ar
gas

Recirculate gas
Fill with liquid
Filter the liquid

MicroBooNE

B. Carls, Fermilab
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We start with the gaseous argon purge

- We fill with Ar gas through
sparger holes in the bottom
of the cryostat

» Since Ar is heavier than
ambient air, acts like a
piston and pushes air out

- See no need to evacuate
the cryostat

Argon gas

26
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-
MicroBooNE employs gas analyzers to

monitor purity

- Capability to measure at
several points in the system

- Two oxygen sensors for high
and low sensitivities, lower
limit of 75 ppt

- Water sensor with lower limit
of 2 ppb, also a Vaisala dew
point sensor for higher
concentrations

- Nitrogen analyzer 0-10 ppm

MicroBooNE B. Carls, Fermilab



.
We monitored the purge with the gas

analyzers

MicroBooNE Volume Exchanges
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.
We monitored the purge with the gas

analyzers

_ Discontinuity results from a
MicroB4 hause in the purge to ges

- We started the purge £ i pressure test the vessel [
on Apr” 20 ‘éwai o DF-310E Highest Detection Level N . _i
« \We followed the g OOO A ﬁ;{::gsycg)::ggsmmrmm -
oxygen and water I S w
concentrations as the toF" e,
purge progressed i . _

Hours from Start of Purge
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LAr Level in MicroBooNE TPC vs. Time

b T
Now it’'s time to fill "%
- Took 9 trucks of liquid argon, 2
roughly a month, went quickly |
° Needed tc.) get argczn IIOW i.r] | .I— | Period during whichTPC was being submerged
nitrogen since, can’t filter it BT P P o a® oS
- Every trailer was checked T T e T

before we accepted it

—We ended up accepting all of
them

—\Vendor exceeded our specs,
nitrogen way less than 2 ppm,
around 0.5 ppm
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E—
Operation of Purification

Condenser

Oxygen filter

Water filter

LAr cryostat

LAr pump
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-
The cleanup of the liquid

- We started filtering on MicroBooNE = VoumeExchanges
July 24
- Here the high-sensitivity £ | . * OFS60E Onyen -
analyzers are shown El :

- Plot goes to the lower | ~ .
detection limits of both :
—2 ppb for the HALO+ water 1"
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MicroBooNE B. Carls, Fermilab 32




.
To measure higher purltles we need

purity monitors

- Use purity monitors, consisting
of a field cage, photocathode

and anode
- A quartz fiber optic cable carries MicroBooNE
UV light from a flash lamp to a E o Gathods Trace ]
gold photocathode e Anode Trace E
- Measure electron signal loss tof- Drift Time ,\ s
from cathode to anode to find 5:_ - o
||fet|me: Charge Arrival _’k_ Bleed-Off E
Qanode = Xecathode X eXp( tdrzft ) _5_ H ‘_I;:I:te':iogif -
e e e E—
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.
To measure higher purltles we need

pu rlty I I lOnItorS iﬁXeﬂashlamp
- Use purity monitors, consisting mwwmwins
of a field cage, photocathode
cathode \gro nd-grid anode|
and anode e A ———
- A quartz fiber optic cable carries MicroBooNE
UV light from a flash lamp to a : - ... Cathode Trace :
gold photocathode e Anode Trace E
- Measure electron signal loss tof- Drift Time ,\ s
from cathode to anode to find 13 - T
lifetime: ! Charge Arrival _’k Bleed-Off -
BV R
Qanode = Ycathode X eXp(_tdrift / T) _53_ 1,4_ Bleeasof -
L
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__________________________________________
Looking at Q,/Q

MicroBooNE Volume Exchanges
- We opt to look at the ratio  ; ++—+ "7
of Qu to Qg Tose
—Closer to what’s measured 07_ """""""""""""""""""""""
—Easierto spot trends suchas ' ),
hitting a sensitivity limit p
- We see lifetimes greater o
than 6 ms ot
- Our spec was only 3 ms! 0 Days o StatofFiaton
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MicroBooNE Volume Exchanges

- We opt to look at the ratio  _ 6 8 R

As with the Liquid Argon Purity Demonstrator, we
surpassed our design electron drift lifetime

| without evacuation. We did it with a fully
Instrumented detector!
drift lifetimes of 3, 6, and 9 ms 0.1

¢ We See |ifetimes greater Days from Start of Filtration
than 6 ms

MicroBooNE B. Carls, Fermilab 36




Flipping the switch on the drift HV

B. Carls, Fermilab



-
Now that we have clean argon, time to

ramp the HV and see Cosmlcs
© 8 P& . We ramped our HV

on August 6

« Since we’re on the
surface, we see lots
of cosmics

. It works!
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Our first cosmic rays!

Run 1147 Event 0. August 6" 2015 16:59
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Our first cosmic rays!

Run 1148 Event 778. August 6™ 2015 17:16
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Our first cosmic rays!

Run 1149 Event 158. August 6 2015 17:52
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Our laser calibration system

- The two UV lasers produce e
tracks we know are straight [ s

- \We can calibrate for space
charge and other field
distortions

- Allows measurements of
the electron drift lifetime

MicroBooNE B. Carls, Fermilab



Ouir first laser track!

70 cm

UV Laser Run 1306 Event 134. August 10t 2015 11:03 -~
MicroBooNE B. Carls, Fermilab 43




We use fully automated event reconstruction

- This event display comes

Run 1532, Event 1
from LArSoft, showing 3D 08/1712015, 04:03 PM
tracks _ 1
- Display shows the full drift , | AL /
window of 4.8 ms \ %
—We take a window before |

and after beam P

—Red wireframe represents
the physical detector
- Different colors are
different tracks This is datal

MicroBooNE B. Carls, Fermilab
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e
Wire-cell reconstruction

- Another approach for

| our reconstruction
I\ AT employs tomography
W AN L techniques
/ N - Very similar to an MRI
S A « This helps
| | tremendously with
uB@ ambiguities
This is data! Run 1463 Event 23. August 15t 2015 10:37

More details on the poster from Xin Qian, check it out

MicroBooNE B. Carls, Fermilab



First Booster Neutrino Beam On
October 15

BNB Intensity =0.683 E12 BNB Rate= 0.0223 E16/hr - 1d
event 2015-10-15 16:12:23.047

1.00 0.0300
N .
- - TN O . oafl s ot g, -
075 o A T et A Wl 00225 5
. 954 o] » . =
§ 050 0.0150 <
S s
g =]
] =
5 025 0.0075 «
a
At A "R e e
000 —"w - 0.0000

15 minutes
A Beam Power

Time inter

Beam Intensiy

4:02 PM
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That was two weeks ago! Where are the
neutrinos?
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.,
Here they are!

- 1.30

. Expect more light 23125 S Dots (Beamon, 1.60618 POT)
during beam window  $%,,,
due to neutrinos S 11 1+1,7 nBooNE _

- Increased scintillation 3§, lh Prominary
light from neutrinos g9
coincides with the sy
beam S & 100 . "

.- We compare the PMT 5% | ++ ++H |
flash rate to that of " = 0.90; ; i ; 5 10
CosmiCS Only and see Time with respect to BNB Signal Time [us]

an excess
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Our automated reconstruction sees them!

MicroBooNE Preliminary

First v identification 1.86E18 POT, BNB
Automated event selection | Automated event selection
Number of events Optical + 3D-based Optical + 2D-based
Non-beam background 46126 285 4 24
(expected)
Total observed 18 463

- One of the goals of MicroBooNE was to demonstrate fully
automated reconstruction

- This involved no hand scanning!

- Event displays of these events will be available Monday in a
mini-press release!

MicroBooNE
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-
In Summary

- Construction of MicroBooNE was completed

- Operations have begun
—QOur detector has been filled with liquid argon and filtration started
—We surpassed our required electron drift lifetime for operating

- We are seeing our first tracks
—Cosmic rays abound, useful for physics studies
—Laser tracks are being used for calibrations

—First neutrinos are on disk, stay tuned for the mini-press release
on Monday!
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.
We get most of our neutrinos from the

Booster Neutrino Beam at Fermilab

- Driven by 8 GeV protons hitting a 6.6620 POT (<3 years)
beryllium target for a mean
. CC Total 173302 1407 1469 36
neutrino energy of 0.8 GeV [z T T T
- Will provide MicroBooNE with 75657 604 702 18
the same L/E (oscillation R
i 740 29 85 07
parameter experiments set) to 64661 1002 502 17
that of MiniBooNE 35951 | 633 | 254 | 7.0
27665 358 236 9.4
- Well known beam, already run 519 13 88 02
for a decade, allows focus to be R
. POT - protons on target QE — quasielastic
placed on UnderStand|ng CC — charged current DIS — deep inelastic scattering
deteCtor CN:gg_r]ggl’;r::ecr:Jtrrent RES - resonant
MicroBooNE B. Carls, Fermilab Y|




.
How did we know it survived its trip? We

looked!
| | n—

Vessel Insulation

uppart table for calibration device

Gas
exhaust
pipe

Camera'
Field cage tubes

000000 OCOCOOCOOCQIOIOC0C000C0C0O0O0OO
e

e
e

¥ Mirror

Anode wire plane
Cathode

I Light
source
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How did we know it survived its trip? We
looked!

A

MicroBooNE B. Carls, Fermilab



