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Motivation
A precise determination of  |Vub| allows a strong test of the standard model. 

The constraint on the apex            of the 
CKM triangle from |Vub| will strengthen tests 
of the Standard-Model CKM framework.

|Vub|
|Vcb|

=
�

1� �2/2

p
⇢̄2 + ⌘̄2

(⇢̄, ⌘̄)

‣  λ = |Vud| known to ~ 1 %    
‣ |Vcb| known to ~2 %

 ~3σ discrepancy between exclusive (B→πlν) 
and inclusive (B→Xulν) determination.
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Dominant error (green ring) comes 
from the uncertainty of |Vub| (~10%).

There has been a long standing puzzle  
in the determination of |Vub|. FNAL/MILC 2009 (BCL z-fit)

HPQCD 2006 (q2 > 16GeV2)

FLAG (Nf = 2+1)

HFAG inclusive
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B → Xulν
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B → πlν

|Vub| × 103



f+(q2) is crucial for the determination of the CKM matrix element  |Vub|.

Experiment Known factor Hadronic part CKM matrix 

Goal

•Experiment can only measure the CKM matrix element times hadronic form factor.  
•The hadronic form factor must be computed nonperturbatively via lattice QCD.

•The exclusive B(s) → Plν semileptonic decay allows the determination of |Vub| via:

3

Exclusive determination of |Vub|

(s)

q2 = m2
B(s)

+ m2
P � 2mB(s)

EP

d�

dq2
=

G2
F

192�3m3
B(s)

�
(m2

B(s)
+ m2

P � q2)2 � 4m2
B(s)

m2
P

�3/2
� |f+(q2)|2 � |Vub|



Recent major progress
• Unquenched QCD simulations (in chiral regime)

• (mostly) Nonperturbative renormalization method

• New approach to heavy quarks on the lattice

1. Sea quark effects          :  Nf = 0 (quench)→ Nf = 2 → Nf = 2+1

2. Chiral-continuum limit  :  mud > ms /6 → (physical point)

3. Renormalization factor :  perturbative → non-perturbative
4. heavy quark                 :  Relativistic heavy quark action
5. Statistics                      :  All-mode averaging (AMA) method

Lattice QCD
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This work

×

格子QCD

格子 QCD K. G. Wilson, PRD 10 (1974) 2445.

連続理論上での場の変数 (無限自由度)
⇒ 格子上の場の変数 (有限自由度)

物理量

⟨O⟩ =
1

Z

∫

DUDψ Oe−ψ̄K(U)ψ−SG(U)

=
1

Z

∫

DU O det K(U)e−SG(U)

有効作用を重みとする多重積分をモンテカルロ数値
積分によって実行。

計算量を減らすために det K = 1とおいた、真空偏極の効果を無視した
クエンチ近似を行う。
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Lattice actions and parameters
•We use the 2+1 flavor dynamical domain-wall fermion gauge field configurations 
generated by the RBC/UKQCD Collaborations.  

C. Allton et al. (RBC/UKQCD Collaboration), Phys. Rev. D78, 114509 (2008)  
Y. Aoki et al. (RBC/UKQCD Collaboration), Phys.Rev. D83, 074508 (2011) 

5

• Provides important cross-check of existing Nf = 2+1 calculations using the MILC 
staggered ensembles. 

• For the b-quark we use the relativistic heavy quark (RHQ) action developed  
by Li, Lin, and Christ in Refs. N. H. Christ, M. Li, and H.-W. Lin, Phys.Rev. D76, 074505 (2007)  
                                                 H.-W. Lin and N. Christ, Phys.Rev. D76, 074506 (2007)

• We use the nonperturbative determinations of the parameters of the RHQ action 
obtained in Y.Aoki et. al Phys. Rev. D 86, 116003 (2012).

  L×T  a [fm] mud ms mπ [MeV] # of configs. # of sources

32 × 64 ≈ 0.08 0.004 0.03 289 628 2

32 × 64 ≈ 0.08 0.006 0.03 345 445 2

32 × 64 ≈ 0.08 0.008 0.03 394 544 2

24 × 64 ≈ 0.11 0.005 0.04 329 1636 1

24 × 64 ≈ 0.11 0.01 0.04 422 1419 1

Fine  
Lattice

Coarse 
Lattice



• Non-perturbative form factors f+(q2) and f0(q2) parametrize the hadronic matrix 
element of the b → u quark flavor-changing vector current Vµ . 

• On the lattice, we calculate the form factors f|| and f⊥ .
   ▶ Proportional to vector current matrix elements in the B(s) meson rest frame:

   ▶ Easy to relate to the desired form factor f+(q2) and f0(q2).
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Form-factor definitions
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• Extract the lattice form factor from the ratio of the 3pt function to 2pt functions:
J. A. Bailey et al. (Fermilab Lattice and MILC), Phys. Rev. D79, 054507 (2009). 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Calculation of lattice form factors

p ≠ 0 pB = 0

Gaussian-smeared 
sequential source 

Relativistic heavy quark action The 2+1 flavor dynamical domain-wall 
fermion gauge field configurations

Domain wall fermion action
O(αsa) improved vector 
current operator 
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Three-point correlator fits

• We use the lattice data up to (1,1,1) for B→π and (2,0,0) for Bs→K.

• After a careful study, we fix source-sink separations T  − t0  
• We fit the ratio to a plateau in the region 0 ≪ t ≪ T. 8

f||f⊥

B→π

Bs→K
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FIG. 5. O(↵sa)-improved ratios R
3,i/p

i
P (left) and R

3,0 (right) with t
snk

= 26 on the a ⇡ 0.086 fm ensemble with aml = 0.004.
Plots for B ! ⇡l⌫ are on the top and Bs ! Kl⌫ are on the bottom. Fit ranges and fit results with jackknife statistical errors
are shown as horizontal bands.
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one without. Here the B

⇤ resonance corresponds to a
state with flavor bu and quantum numbers J

P = 0+

for fk and 1� for f?. The experimentally-measured
vector-meson mass is M

B

⇤ = 5.3252(4) GeV [9]. The
scalar B

⇤ meson has not been observed experimen-
tally, but its value has been estimated theoretically us-
ing heavy-quark and chiral-symmetry arguments to be
M

B

⇤(0+) = 5.63 GeV [42], while the 0+-0� splitting
has been estimated in (2+1)-flavor lattice QCD to be
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where g

b

is the B

⇤
B⇡-coupling constant. At tree level,

the mass of a pion composed of two domain-wall quarks
is given in terms of the light-quark mass by

M

2

⇡

= 2B(m
l

+m

res

) , (35)

where B is a leading-order low-energy constant.
We include a term proportional to a

2 in the chiral fit
functions Eqs. (31) and (32) to account for the dominant



• The continuum form factors are given by

Renormalization of lattice form factors

compute 
nonperturbatively

compute with 1-loop mean-field 
improved lattice perturbation theory

‣ ρ-factor calculated in PhySyHCAl (framework for automated lattice perturbation theory). 

‣ ZVll  obtained by the RBC/UKQCD collaborations by exploiting the fact ZA=ZV  for domain-wall fermions.

‣ ZVbb obtained from the matrix element of the b→b vector current between two Bs mesons.

• We calculate the heavy-light current renormalization factor ZVbl using the 
mostly nonperturbative method. A. X. El-Khadra et al.  Phys.Rev. D64, 014502 (2001)  

Y. Aoki et al. (RBC/UKQCD Collaboration), Phys.Rev. D83, 074508 (2011)  

≈1

Zbl
Vµ

= �bl
Vµ

�
Zbb

V Zll
V

N. H.Christ et al. (RBC/UKQCD Collaboration), arXiv:1404.4670  

C. Lehner arXiv:1211.4013
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Chiral-continuum extrapolations of  f||  and  f⊥
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 The function δf  indicate non-analytic “log” functions of the pion mass.

• Correlated simultaneous chiral-continuum fit (mπ → mπphys, a → 0 )  
to f⊥ and f|| data using Hard-pion NLO SU(2) χPT.

‣ Strange quark integrated out

‣ Applies to regime where EP >> mπ 

J. Bijnens and I. Jemos, Nucl. Phys. B 840, 54 (2010) 

• The hard-pion SU(2) logarithms are given by simply taking the limit mπ /EP → 0.
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Black curves show chiral-continuum extrapolated f|| and  f⊥ with statistical errors. 11

f⊥ f||

f||f⊥
Chiral-continuum extrapolations of  f||  and  f⊥

B→π B→π

Bs→K Bs→K
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FIG. 6. Chiral-continuum extrapolation of the B ! ⇡`⌫ (upper plots) and Bs ! K`⌫ (lower plots) form factors from correlated
fits using NLO SU(2) hard-pion/kaon HM�PT. Fits of f? are on the left and of fk are on the right. In each plot, the colors
distinguish between data points on the five di↵erent ensembles: circles and squares correspond to the a ⇡ 0.11 fm data and
triangles and diamonds to a ⇡ 0.086 fm data. The colored fit curves show the interpolation/extrapolation in pion/kaon energy:
the fit function is evaluated at the unphysical sea-quark masses and nonzero lattice spacings on the di↵erent ensembles, such
that the curves should go through the data points of the same color. The continuum, physical-quark-mass form factors are
shown as a function of pion/kaon energy by the black lines with gray error band. The vertical dashed line on the left-hand side
of each plot shows the physical pion or kaon mass.

IV. ESTIMATION OF SYSTEMATIC ERRORS

We now discuss the sources of systematic uncertainty
in our determinations of the B ! ⇡`⌫ and B

s

! K`⌫

form factors. Each uncertainty is discussed in a sepa-
rate subsection. We visually summarize the error bud-
gets for the form factors versus q2 in Fig. 7, and provide
a detailed numerical error budget for the form factors at
three representative q

2 values within the range of simu-
lated lattice momenta in Table VI. The form factors at
these three points will be used later in Sec. V for the
extrapolation to q

2 = 0 via the z expansion.

In cases where the estimation of a systematic uncer-
tainty requires the explicit variation of simulation param-
eters, we use the a ⇡ 0.11 fm ensemble with am

l

= 0.005
and take the dependence on that ensemble to be repre-
sentative of all ensembles.

A. Chiral-continuum extrapolation

We estimate the systematic uncertainty due to the
chiral-continuum extrapolation of the B ! ⇡ and
B

s

! K form factors by varying the chiral-continuum
fit Ansätze. We consider the following fit alternatives:

• standard HM�PT including explicit E

P

depen-
dence in the chiral logarithms

• omitting the term proportional to a

2 in Eqs. (31)
and (32)

• omitting the term proportional to M

2

⇡

in Eqs. (31)
and (32)

• omitting terms proportional to a

2 and M

2

⇡

in
Eqs. (31) and (32)



f+  and  f0
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  Error budgets 

• Dominant uncertainties from statistics and chiral extrapolation.
13
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FIG. 7. Visualization of the error budgets for the B ! ⇡`⌫ (upper plots) and Bs ! K`⌫ (lower plots) form factors. Error
budgets for f? are on the left and of fk are on the right. The curves from bottom-to-top show the increase in the total
percentage error as we add each individual source of error in quadrature. In each plot, the left y-axis label shows the squared
error, while the right y-axis label shows the error in the form factor. For readability, we have combined all of the sources of
uncertainty that we estimate to be below ⇠ 1% into a single entry labeled “other systematics.” The three vertical lines in each
plot show the location of the synthetic data points used in the subsequent extrapolation to q2 = 0. Detailed error budgets at
these q2 values are given in Table VI.

quadrature to obtain the total systematic error due the
lattice spacing.

We examined the slopes with respect to the RHQ pa-
rameters for both B ! ⇡ and B

s

! K, and found
them to be consistent. We therefore base our estimates
for the systematic uncertainty due to the lattice spac-
ing on the slopes obtained for the B

s

! K form fac-
tors because the smaller statistical errors in B

s

! K

enable the slopes to be resolved more precisely. Figure 9
shows the slopes of the B

s

! K`⌫ form factors with
respect to the {m

0

a, c

P

, ⇣} on the a ⇡ 0.11 fm ensem-
ble with am

l

= 0.005. For this slope estimate, we use
the unimproved heavy-light vector current from Eq. (10).
We find the largest slopes at ~p = 2⇡(2, 0, 0) for f? and
~p = 2⇡(1, 1, 0) for fk. Following the procedure outlined
above, we estimate lattice-spacing errors in f? and fk
of 1.9 % and 2.2 %, respectively. In the continuum this
corresponds to errors on f

+

(f
0

) of 2.0% (2.2%) which
we take for both B

s

! K and B ! ⇡.

C. Light- and strange-quark mass uncertainties

Here we estimate the error in the form factors due
to the uncertainty in the light-quark mass and the mis-
tuning of the strange sea quark. For clarity we discuss
separately each place where the light- or strange-quark
mass enters the analysis.

1. u/d-quark mass uncertainty

We obtain the physical form factors f? and fk af-
ter the chiral-continuum fit by evaluating Eqs. (31) and
(32) at the physical average u/d-quark mass a

32

m̃

phys

ud

=
0.00102(5). We estimate the error in the form factors due
to the light-quark mass uncertainty by varying m̃

phys

ud

by
plus/minus one sigma. For B ! ⇡ the central value shifts
by 0.2� 0.3% for fB⇡

+

and 0.2� 0.4% for fB⇡

0

, while for

f0f+

B→π

Bs→K

8-14% 8-14%

5-6% 7%



• Lattice and experimental data overlap at high q2 (low Eπ2 ),  

       Lattice:  

Experiment:                                             → |Vub| = 3.69(37) x10-3

• But experimental data is more precise at low q2.  
→ We use z-expansion fit to extrapolate lattice data to zero q2.

B→π Lattice data  f+ B→πlν Experimental data  |Vub|×f+
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⌧B

0
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24⇡2

Z q2
max

(16GeV)2
dq2~p3⇡|f+(q2)|2 = 2.69(52)

�B = 3.68(19)⇥ 10�5



z-expansion of  f+  and  f0

•Consider mapping the variable q2 onto a new variable z. z =

�
t+ � q2 �

�
t+ � t0�

t+ � q2 +
�

t+ � t0

t± = (mB ± m�)2
semileptonic region  
  0 < q2 < t−  →  |z|<0.28  (when we choose t0 = topt )

•The form factor f (q2) is analytic in the semileptonic region except at B* pole.  
→ f (q2) can be expressed as convergent power series.

f(q2) =
1

P (q2)�(q2, t0)

��

k=0

a(k)(t0)z(q2, t0)
k

contains subthreshold poles Arbitrary analytic function which affects the 
numerical values of the series coefficients

•The sum of the series coefficients is bounded by unitarity.

•Therefore this bound combined with the small |z| ensures that only a small number of 
terms is needed to accurately describe the shape of the form factor.

N�

k=0

a(k)2 � 1

Boyd, Grinstein, Lebed, Phys.Rev.Lett. 74 (1995) 4603

 We employ the model-independent z-expansion fit to extrapolate lattice results to 
full kinematic range.
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z-expansion of  f+  and  f0
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FIG. 12. Preferred K = 3 fit of the B ! ⇡`⌫ (upper plots) and Bs ! K`⌫ (lower plots) lattice form factors to the z-expansion
including the kinematic and heavy-quark constraints versus z (left) and versus q2 (right). The black open symbols show the
synthetic data points with statistical (inner) and statistical � systematic (outer) error bars. The solid curves with error bands
show the fit results for f

+

(q2) and f
0

(q2).

VI. PHENOMENOLOGICAL APPLICATIONS

In this section we present two phenomenological appli-
cations of our form-factor results.

First, in Sec. VIA, we use our results for the B ! ⇡`⌫

form factors to determine the CKM matrix element |V
ub

|.
We fit recent experimental measurements of the B ! ⇡`⌫

di↵erential branching fraction to the z-parameterization

to obtain the slope b(1)
+

/b

(0)

+

and curvature b(2)
+

/b

(0)

+

. Con-
firming that the lattice and experimental shapes are in-
deed consistent, we then perform a combined z-fit of our
numerical B ! ⇡`⌫ form-factor data with the experi-
mental measurements to obtain a model-independent de-
termination of |V

ub

|. This method can also be applied to
the decay B

s

! K`⌫, once it has been observed experi-
mentally, to provide an alternate determination of |V

ub

|.
Next, in Sec. VIB, we make predictions for Standard-

Model observables for the decay processes B ! ⇡`⌫ and
B

s

! K`⌫ for both ` = µ, ⌧ final-state charged lep-
tons. (Here we use µ to indicate both muon and electron
final states, for which the Standard-Model predictions

are indistinguishable at the current level of precision.)
We show results for the di↵erential branching fractions,
forward-backward asymmetries, and µ/⌧ ratios (which
are independent of |V

ub

|). We only calculate observables
that depend upon |V

ub

| for B
s

! K`⌫ decays, using the
value determined previously in Sec. VIA. Once the ex-
perimental error on the branching fraction is commen-
surate with the theoretical form-factor uncertainties, our
B

s

! K`⌫ form-factor results will enable a su�ciently
precise determination of |V

ub

| to illuminate the discrep-
ancy between |V

ub

| from inclusive B ! X

u

`⌫ and exclu-
sive B ! ⇡`⌫ semileptonic decays.

A. Determination of |Vub| from B ! ⇡`⌫

For the determination of |V
ub

|, we include the two
most recent experimental measurements from BaBar,
which are the untagged 6-bin (“BaBar 2010”) and 12-bin
(“BaBar 2012”) analyses in Refs. [1, 3]. Because the 12-
bin analysis uses more data and di↵erent candidate selec-

•  Kinematic constraint:   f+(0) = f0(0)

• heavy-quark power-counting:      

20

TABLE X. Matrix elements Bjk(t0) that enter the unitarity
bound on the BCL series coe�cients for the choice t

0

= t
opt

.
The remaining coe�cients can be obtained from the relations
Bj(j+k) = B

0k and the symmetry property Bjk = Bkj . To
derive these results we use the outer functions �

+

and �
0

in
Eq. (7) of Ref. [53] with inputs from Ref. [24], giving �(0)

+

=

5.03⇥ 10�4 and �(0)

0

= 1.46⇥ 10�2.

B
00

B
01

B
02

B
03

B
04

B
05

fB⇡
+

0.0197 0.0042 -0.0109 -0.0059 -0.0002 0.0012
fB⇡
0

0.1062 0.0420 -0.0368 -0.0406 -0.0201 -0.0057
fBsK
+

0.0115 0.0004 -0.0076 -0.0007 0.0018 0.0004
fBsK
0

0.0926 0.0137 -0.0484 -0.0174 -0.0003 0.0024

truncating the z-expansion for the B ! ⇡`⌫ form factor,

BCL choose t

0

= t

opt

⌘ (M
B

+M

⇡

)
�p

M

B

�p
M

⇡

�
2

,
such that the magnitude of |z|  0.280 is minimized in
the semileptonic range. With the analogous choice for
B

s

! K`⌫, |z|  0.146 for the semileptonic range.
Although the functional form of the BCL parameter-

ization is simpler than that of BGL, the unitarity con-
straint on the coe�cients is more complicated [24]:

KX

j,k=0

B

jk

(t
0

)b(j)
i

(t
0

)b(k)
i

(t
0

) ⇠< 1 , (48)

B

jk

(t
0

) =
1X

n=0

⌘

n

(t
0

)⌘
n+|j�k|(t0), (49)

where ⌘
i

is the Taylor coe�cients in the expansion of the
outer function

 (z) =
M

2

B

⇤

4(t
+

� t

0

)
�

i

(q2(z), t
0

)
(1� z)2(1� z⇤)2

(1� zz⇤)2
,(50)

z⇤ = z(M2

B

, t

0

), (51)

around z = 0. The values of B
jk

for the B ! ⇡`⌫ and
B

s

! K`⌫ form factors with the choice t

0

= t

opt

are
given in Table X.

For the B ! ⇡`⌫ vector form factor, Becher and
Hill [55] use heavy-quark power-counting to provide an
estimate for the sum of the coe�cients:

NX

k=0

⇣
a

(k)

+

⌘
2

⇠
✓
⇤

m

b

◆
3

, (52)

where ⇤ is a typical hadronic scale. Taking ⇤ ⇠
1000 MeV, this would imply

P
a

2

k

⇠ 0.01, which is well
below the bound from unitarity. Experimental measure-
ments [1–4] and previous lattice calculations [26] con-
firm this expectation. This argument also applies to the
B

s

! K`⌫ vector form factor, where we emphasize that
Eq. (52) is only a rough constraint due to the imprecise
scale ⇤ and omitted higher-order corrections in the OPE
and 1/m

b

.

B. Extrapolation of lattice form factors to q2 = 0

We now extrapolate our results for the B ! ⇡`⌫

and B

s

! K`⌫ form factors to q

2 = 0 using the z-
expansion. We first generate synthetic data points in the
range of simulated data from the output of the chiral-
continuum extrapolation. Recall that the continuum,
physical quark-mass form factors are obtained from fits
to Eqs. (31) and (32) by fixing M

2

⇡

to the physical value
and a

2 ! 0. After these replacements, the physical form
factors depend upon three independent functions of the
pion or kaon energy E

P

. We therefore generate three syn-
thetic data points each for f

0

and f

+

in order to ensure
that the covariance matrix is not singular. In anticipa-
tion of the z-fit, we choose the points to be evenly spaced
in z (rather than q

2). The q

2 values and error budgets
for the synthetic lattice data are given in Table VI.

We fit our synthetic lattice data for the B ! ⇡`⌫ and
B

s

! K`⌫ form factors including statistical and system-
atic correlations between q

2 values. For our preferred fit
we use the BCL parameterization with the kinematic con-
straint f

+

(0) = f

0

(0) and using the theoretical estimate
from heavy-quark power-counting to constrain the sum
of the coe�cients of the vector form factor via Bayesian
priors. We study the central values and errors of the se-
ries coe�cients as a function of the truncation K such
that our final form-factor results include the truncation
error. We also compare to results using the BGL param-
eterization as a check.

We first perform separate fits of f

+

and f

0

without
imposing any constraints on the sum of coe�cients. The
results for B ! ⇡`⌫ are given in the top two panels of
Table XI, and for B

s

! K`⌫ in the upper two panels of
Table XII. The separate fits of f

+

and f

0

for K = 2, 3
are shown in the left-hand plots of Fig. 11 for B ! ⇡`⌫

(upper) and B

s

! K`⌫ (lower). The synthetic lattice
data points are correlated, and one must include a term
quadratic in z to obtain a good fit (recall that for f

+

the
expression with K = 2 includes a term proportional to z

2

that is related to the z

0 and z

1 terms). The normaliza-

tions b

(0)

i

are well determined by the lattice data, with
central values that are stable within errors when going
from K = 2 to K = 3. This is important because the
normalization of the vector form factor plays a key role
in the determination of |V

ub

| (see Sec. VIA). We cannot
go beyond K = 3 because we have only three synthetic
data points.

In the separate fits to f

+

and f

0

with K = 3, the kine-
matic constraint f

+

(0) = f

0

(0) is automatically satisfied
within uncertainties, but with large errors. We can there-
fore impose the kinematic constraint f

+

(0) = f

0

(0). The
results of the combined fits are given in the third panels
of Tables XI and XII. As expected, the constrained fits
with K = 2 for both f

+

and f

0

have poor p-values, but
the remaining fits tried are all of good quality. Adding
the kinematic constraint (and only considering the good
fits) has little impact on the results for the normalizations

B→π

Bs→K



Determination of |Vub|

•  q2 dependence of lattice form factor agrees well with experiment.

• Error on normalization (and hence |Vub|) saturates with 3-parameter z-fit.

Now add experimental data to z-fit to obtain |Vub|.
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FIG. 16. Model-independent determination of |Vub| from a combined fit of experimental measurements of the B ! ⇡`⌫
branching fraction [1–4] and our lattice result for the B ! ⇡`⌫ form factor f

+

(q2) to the BCL z parameterization, Eqs. (45)
and (46), with K = 3. The left plot shows (1� q2/m2

B⇤)f
+

(q2) vs. z (where the experimental data have been rescaled by the
value of |Vub| determined in the fit), while the right plot shows �B/�q2 vs. q2 (where the lattice points have been rescaled by
|Vub|). In both plots, the filled black circles show the lattice data, while the open colored symbols show the experimental data.
The black curve with gray error band shows the fit result.

B. Standard-Model predictions for B ! ⇡`⌫ and
Bs ! K`⌫ observables

The Standard-Model di↵erential decay rate for B
(s)

!
P `⌫ is given in Eq. (1). Using the experimentally-
measured lepton and meson masses [9], we obtain pre-
dictions for the di↵erential decay rate divided by |V

ub

|2.
These are plotted for the muon and ⌧ -lepton final states
in Fig. 17, where we use “muon” to denote decays to ei-
ther of the light charged leptons (` = µ, e) throughout
this section. Integrating the di↵erential decay rates over
the kinematically-allowed q

2 range gives1

�(B ! ⇡µ⌫)/|V
ub

|2 = 6.2(2.5) ps�1

, (60)

�(B ! ⇡⌧⌫)/|V
ub

|2 = 4.3(1.2) ps�1

, (61)

�(B
s

! Kµ⌫)/|V
ub

|2 = 4.55(1.08) ps�1

, (62)

�(B
s

! K⌧⌫)/|V
ub

|2 = 3.52(0.60) ps�1

, (63)

with errors of about 25–40% and 15–30% for the µ and ⌧

final states, respectively. We also use the determination
of |V

ub

| from our calculation of the B ! ⇡`⌫ form factors
(Eq. (56)) to make predictions for the B

s

! K`⌫ di↵er-
ential branching fractions for ` = µ, ⌧ . These are plotted
in Fig. 18. For comparison, we also show the prediction
for dB/dq2 using the determination of |V

ub

| from inclu-
sive B ! X

u

`⌫ decay [59]. The form-factor uncertainties
are su�ciently small for q

2 ⇠> 13 GeV2 that, given an

1 In practice, the full kinematic range may not be accessible ex-
perimentally, in which case the limits of integration here and
throughout this section will need to be changed accordingly.

experimental measurement of the branching fraction in
this region with commensurate precision, one can distin-
guish between the curves corresponding to |V

ub

|
excl.

and
|V

ub

|
incl.

. Thus we anticipate that B

s

! K`⌫ semilep-
tonic decay will eventually play an important role in ad-
dressing the current “|V

ub

| puzzle.”
Semileptonic decays to ⌧ leptons may be particularly

sensitive to new physics associated with electroweak sym-
metry breaking due to the large ⌧ mass, or more gener-
ally sensitive to any Standard-Model extensions with new
scalar currents. Moreover, the ratio of µ/⌧ di↵erential
decay rates [60]

R⌧/µ

P

(q2)⌘d�(B
(s)

! P ⌧⌫)/dq2

d�(B
(s)

! Pµ⌫)/dq2
(64)

provides a precise test of the Standard Model that is
independent of the CKM matrix element |V

ub

|. Fig-
ure 19 shows the predictions for the ratios of di↵eren-
tial branching fractions using our determinations of the
B ! ⇡`⌫ and B

s

! K`⌫ form factors in Tables XIII–
XIV. Integrating over the kinematically allowed ranges,
we obtain the following Standard-Model predictions for

R

⌧/µ

P

⌘ �(B
(s)

! P ⌧⌫)/�(B
(s)

! Pµ⌫):

R

⌧/µ

⇡

= 0.69(19) , (65)

R

⌧/µ

K

= 0.77(12) . (66)

The three-body final state in B

(s)

! P `⌫ decay also
enables one to construct and study observables that de-
pend on the kinematics of the decay products. Such
angular observables are particularly sensitive to possi-

|Vub| = 3.61(32)⇥ 10�3



Conclusions and future prospects

• We have calculated the B → π and Bs → K form factors  using 2+1 flavor dynamical 
domain-wall fermion gauge field configurations with relativistic heavy quark action.

•Provide important independent check on existing calculations using staggered light 
quarks.

•presented results for B → π and Bs → K lattice form factors using z-expansion fit.

• |Vub| is determined by combined z-fit with experimental data from Babar and Belle to 
about 9% precision.  
 
Future prospect

•RBC/UKQCD Möbius domain-wall  
+ Iwasaki ensemble (Mπ ~ 140MeV).

•All-mode averaging method

32

TABLE XVIII. Determinations of |Vub|. Top panel: results from inclusive B ! Xu`⌫ decay [59] and B ! ⌧⌫ leptonic decay [10].
Middle panel: predictions from CKM unitarity [64, 65]. Bottom panel: results from exclusive B ! ⇡`⌫ decay using form factors
from (2+1)-flavor lattice QCD [25, 26, 59]. Errors shown are either the total uncertainty or the experimental and theoretical
uncertainties, respectively.

from |Vub|⇥ 103

HFAG inclusive average [49] B ! Xu`⌫ 4.40(15)(20)
FLAG (Nf = 2 + 1) [10] B ! ⌧⌫ 4.18(52)(9)

CKMfitter Group [64] CKM unitarity 3.435(+250

�84

)
UTfit Collaboration [65] CKM unitarity 3.63(12)

HPQCD (HFAG q2 > 16GeV2) [25, 59] B ! ⇡`⌫ 3.52(8)(+61

�40

)
FNAL/MILC (HFAG BCL z-fit) [26, 59] B ! ⇡`⌫ 3.28(29)
This work B ! ⇡`⌫ 3.61(32)

This work
FNAL/MILC 2009 (BCL z-fit)
HPQCD 2006 (q2 > 16GeV2)

UTfit Collaboration
CKMfitter Group

FLAG (Nf = 2+1)

HFAG inclusive

3.0 3.5 4.0 4.5 5.0

B → Xulν

B → τν 

CKM unitarity

B → πlν

|Vub| × 103

FIG. 22. Determinations of |Vub| from Table XVIII. For points
with double error bars, the inner error bars are experimental
while the outer error bars show the total experimental plus
theoretical uncertainty added in quadrature.

form factors fBsK

+

(0) di↵er by only 1.9�.
The semileptonic decay B

s

! K`⌫ has not yet been
observed experimentally. We can therefore make predic-
tions for Standard-Model observables for the decay pro-
cesses B

s

! Kµ⌫ and B

s

! K⌧⌫. Using our results for
the B

s

! K`⌫ form factors in Table XIV and our de-
termination of |V

ub

| from B ! ⇡`⌫ given above, we cal-
culate the di↵erential branching fractions and forward-
backward asymmetries. Our lattice form-factor deter-
minations at q

2 ⇠> 13GeV2 are su�ciently precise that
future experimental measurements of the B

s

! K`⌫ dif-
ferential branching fraction in this range with similar un-
certainties will be able to distinguish between Standard-
Model predictions using |V

ub

| from inclusive B ! X

u

`⌫

and exclusive B ! ⇡`⌫ semileptonic decays, and thereby
weigh in on the current ⇠ 3� disagreement between the
two determinations.

We also calculate the ratio of µ-to-⌧ di↵erential de-
cay rates, and the normalized forward-backward asym-
metries, for both B ! ⇡`⌫ and B

s

! K`⌫. Because
these quantities are independent of |V

ub

|, they potentially
provide more stringent tests of Standard-Model exten-
sions such as ones that give rise to new scalar or right-
handed currents. In practice, it will likely be di�cult for

LHCb to measure B

s

decays with ⌧ leptons in the final
state, so the B

s

! Kµ⌫ predictions in Sec. VIB may be
most useful for the foreseeable future. Belle II, however,
should observe the decay B ! ⇡`⌫ with both ` = µ, ⌧

final states, and we anticipate that they will measure the
forward-backward asymmetries and eventually the µ/⌧

ratio for this decay. Future measurements of these ob-
servables will be especially important given the current

⇠> 3� discrepancy observed in R(D) and R(D⇤) for the
similar decays B ! D

(⇤)
`⌫ [69, 70].

Our results for the B ! ⇡`⌫ and B

s

! K`⌫ pro-
vide important independent checks of existing calcula-
tions using staggered light quarks. Such confirmation
is especially important given the present approximately
3� tension between |V

ub

| obtained from inclusive and
exclusive semileptonic B decays. Currently the preci-
sion of our determination of the form factors is limited
by statistics and by the relatively large chiral extrapo-
lation to the physical light-quark mass. To address the
chiral-extrapolation error, we are presently analyzing the
RBC/UKQCD Möbius domain-wall + Iwasaki ensem-
ble [71–73] with a lattice spacing close to the coarser
value a ⇡ 0.11 fm used in our current analysis, but
with M

⇡

⇡ 140 MeV. We are also using all-mode av-
eraging [74, 75] to reduce the statistical errors on the
individual numerical data points, and expect some reduc-
tion in the statistical errors. With these improvements
we anticipate a reduction in the current form-factor er-
rors. Further, our future physical-mass results will also
include a determination of the tensor form factor, which
will enable a calculation of the Standard-Model rate for
the rare decay B ! ⇡`

+

`

� and similar processes.

Because we present our results for the B ! ⇡`⌫ and
B

s

! K`⌫ form factor as coe�cients of the BCL z-
parameterization and the matrix of correlations between
them, our form factors can be combined with new ex-
perimental measurements (and even with other lattice
form-factor calculations) to further improve |V

ub

| in the
future. In particular, our B

s

! K`⌫ form-factor results
will enable an alternate determination of |V

ub

| once the
process has been observed in experiment. More generally,
our form-factor results in Tables XIII–XIV can be used
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Dispersion relation and amplitude Zπ

• The pion energies satisfy the continuum dispersion relation:

• The pion amplitude                               is independent of momentum 

E2
⇡ = |~p⇡|2 +m2

⇡

Z⇡ = |h0|O⇡|⇡i|

20

2 Dispersion relation and amplitudes of ⇡ and K meson.
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Figure 7: dispersion relation of pion and keon
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Figure 8: Amplitudes of pion and keon
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O(a) improved vector current operator

Vµ,0(x) = q̄(x)Oµ,0Q(x), Oµ,0 = �µ

The heavy-light current operator at tree level is 

Four single derivative operators are needed for O(a) improvement.

O1,µ = 2
��
Dµ

O2,µ = 2
��
Dµ

O3,µ = 2�µ�i
��
D i

O4,µ = 2�µ�i
��
D i

Oimp
0 = O0,0 + cV0

3 O0,3 + cV0
4 O0,4

Oimp
i = Oi,0 + cVi

1 Oi,1 + cVi
2 Oi,2 + cVi

3 Oi,3 + cVi
4 Oi,4

The O(a) improved vector current operator is given by

temporal (µ = 0):  
spatial (µ = i):

Coefficients are determined by 1-loop lattice perturbation theory.
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Relativistic heavy quark action for b-quarks

• The Fermilab group showed that you can remove all errors of O((ma)n) by 
appropriately tuning the parameters of the anisotropic clover action 

• Errors are of O(a2p2).

•  Li, Lin, and Christ showed that the parameters {m0, ζ, cP} can be tuned 
nonperturbatively.

• We use the results for the parameters of the RHQ action obtained for b-quarks in 
Y. Aoki et. al Phys. Rev. D 86, 116003 (2012)

Heavy quark mass introduces discretization errors of O((ma)n).  
 - At bottom quark mass, it becomes severe: mb ~ 4 GeV and 1/a ~ 2 GeV, then mba > O(1).  

SRHQ =
X

n,n0

 ̄n

(
m0 + �0D0 �

aD2
0

2
+ ⇣

"
~� · ~D � a ~D2

2

#
� a

X

µ⌫

icP
4
�µ⌫Fµ⌫

)

n,n0

 0
n

Relativistic heavy quark action (RHQ action)

  A. X. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, Phys. Rev. D55, 3933 (1997)

 N. H. Christ, M. Li, and H.-W. Lin, Phys.Rev. D76, 074505 (2007) 
 H.-W. Lin and N. Christ, Phys.Rev. D76, 074506 (2007) 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Renormalization factor ZVbb

2.4 The flavor-conserving renormalization factor ZV hh

The flavor-conserving renormalization factor Z

bb
V can be determined by a ratio of B ! B 3pt

function to single B meson 2pt function as follow.

Z

bb
V ⇥ hmB

0

|V bb
0

|mB
0

i = 2mB (18)

C

B
2

(T )

C

B!B
3,µ (t, T )

t,T!1�����! Z

bb
V (19)

where

C

B
2

(t) =
X

n

Z

B
n

src

Z

B
n

⇤
sink

e

�mB
n t

2mB
n

(20)

C

B!B
3,µ (t, T ) =

X

m,n

Z

B
m

src

2mB
m

hmB
m|Vµ|mB

n i
Z

B⇤
n

sink

2mB
n

e

�mB
mt

e

�mB
n (T�t) (21)

The use of the heavier spectator quark significantly reduces the statistical uncertainty because
ZV hh is independent of spectator mass. Here Bs meson is empolyed to obtain the ZV hh insted of B
meson.

2.4.1 Bs meson

Table 8: folded 2pt Bs meson and unfolded 2pt Bs meson
l2464f21b213m005m040 m0.0343

Smeared source - point sink

Folding Unfolding

n2

fitting range �2/d.o.f p-value fitting range �2/d.o.f p-value

0 [10:25] 3.1025(12) 0.41 98% [10:25] 3.1040(18) 0.76 73%

Smeared source - point sink

0 [6:20] 3.1037(13) 1.03 42% [6:20] 3.1057(18) 1.24 24%

12

At tree level, the expression of ZVbb is given by

2.4.2 ZV hh

The expression for Zbb
V and Z

ll
V at tree level is given by

Z

bb
V = u

0

exp(M
1

), M

1

= log[1 + m̃

0

], m̃

0

=
m

0

u

0

� (1 + 3⇣)(1� 1

u

0

) (22)

Z

ll
V =

u

0

1� !̃

2

, !̃ = 1� [M
5

� 4(1� u

0

)] (23)

where the values from this simulation is m
0

= 7.80, ⇣ = 3.20 and u

0

= 0.8757. As a result,

m̃

0

= 10.412 (24)

Z

bb
V = 9.993 (25)

Below are results for ZV hh with folded/unfolded Bs meson. As shown in results, unfolded Bs meson
su�ciently reduces the statistical uncertainty of ZV hh since noise cancellation would exist in the ratio
of 3pt to 2pt.j

Table 9: The results of ZV hh with folded Bs meson and unfolded Bs meson: For unfolding case, The
several fitting ranges are tried to find out un optimal one. The fitting range should be ended at t = 11,
because there is a jump at t = 12 in the data of ZV hh

l2464f21b213m005m040 m0.0343

Smeared source - point sink

Folding Unfolding

n2

fitting range �2/d.o.f p-value fitting range �2/d.o.f p-value

0 [6:11] 10.28(31) 1.21 30% [6:11] 9.966(46) 1.22 29%

[7:11] 9.979(48) 1.28 27%

[6:12] 9.993(45) 1.94 7%

[6:14] 9.982(43) 1.74 8%
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Figure 13: ZV hh with folded Bs meson and unfolded Bs meson
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Here  m0 = 7.80,  ζ = 3.20,  u0 = 0.8757 .

Table 5: Fit results for the ratio of 3pt to 2pt function R

0

and Ri with higher derivative operator
O

1

±O
2

and O
3

±O
4

on the ml = 0.005 243 ensemble with {m
0

a, cSW , ⇣} = {8.45, 5.80, 3.10}.
Temporal Spatial

Operator (pL
2⇡ )

2 fit range R

3,0
�2

d.o.f.

p-value fit range R

3,i
�2

d.o.f.

p-value
O

0

0 [6:10] 0.4222(60) 1.50 20%
1 [6:10] 0.3424(88) 0.12 98% [6:10] 0.1600(46) 1.00 41%
2 [6:10] 0.307(16) 0.28 89% [6:10] 0.1216(67) 1.68 15%
3 [6:10] 0.262(29) 0.57 68% [6:10] 0.110(11) 0.68 60%

O
1

+O
2

0 [6:10] 0.3990(56) 1.40 23%
1 [6:10] 0.2296(61) 0.07 99% [6:10] -0.0467(23) 1.60 17%
2 [6:10] 0.1491(92) 0.20 94% [6:10] -0.0579(33) 1.46 21%
3 [6:10] 0.077(16) 0.80 53% [6:10] -0.0528(61) 1.11 35%

O
1

�O
2

0 [6:10] 5.351(75) 1.80 12%
1 [6:10] 4.24(11) 0.44 78% [6:10] -0.1230(38) 1.15 33%
2 [6:10] 3.74(18) 0.77 54% [6:10] -0.0954(67) 0.42 79%
3 [6:10] 3.18(33) 0.77 54% [6:10] -0.080(12) 0.21 93%

O
3

+O
4

0 [6:10] -0.3564(50) 1.55 19%
1 [6:10] -0.2016(55) 0.23 92% [6:10] 0.0236(20) 1.84 12%
2 [6:10] -0.1275(82) 0.62 65% [6:10] -0.0027(26) 1.98 9%
3 [6:10] -0.052(15) 1.20 31% [6:10] -0.0194(56) 0.27 90%

O
3

�O
4

0 [6:10] 0.3564(50) 1.55 19%
1 [6:10] 0.2682(66) 0.43 79% [6:10] -0.1934(50) 1.01 40%
2 [6:10] 0.232(12) 0.68 61% [6:10] -0.1496(76) 1.06 37%
3 [6:10] 0.192(23) 1.37 24% [6:10] -0.115(14) 0.29 89%

improved 0 0.4456(64)
1 0.3594(92) 0.1621(47)
2 0.322(16) 0.1232(68)
3 0.273(30) 0.112(12)

4.1.4 Renormalization factor Z

bb
V
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Figure 7: (left) E↵ective mass for Bs meson and (right) Zvhh on the ml = 0.005 243 ensemble with
{m

0

a, cSW , ⇣} = {8.45, 5.80, 3.10}. Shaded band show statistical error and fitting range.

11

NP : Zbb
V = 10.037(34)

tree level : Zbb
V = 9.993
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FIG. 8. Relative change of the form-factor central value under the considered fit variations for B ! ⇡`⌫ (upper) and Bs ! K`⌫
(lower). In each plot, the shaded band shows the statistical uncertainty of the preferred fit. The three vertical lines show the
location of the synthetic data points used in the subsequent extrapolation to q2 = 0.

B

s

! K both f

BsK

+

and f

BsK

0

change by 0.1%.

2. Strange sea-quark mistuning

Our preferred chiral-continuum fit employs SU(2) chi-
ral perturbation theory, in which the strange quark mass
is integrated out, so our fit function has no explicit depen-
dence on m

s

. Further, at each lattice spacing, results for
the form factors are only available at a single value of the
strange sea-quark mass, so we cannot directly compute
the strange sea-quark mass dependence of fk and f?. We
therefore study the light sea-quark mass dependence and
use it to bound the strange sea-quark mass dependence.
We cannot resolve any light sea-quark mass dependence
within statistical uncertainties, and expect the strange
sea-quark mass dependence to be even smaller. Thus we
take the error due to mistuning the strange sea-quark
mass to be negligible.

3. Valence strange-quark mass uncertainty

The B

s

! K form factors have explicit strange
valence-quark mass dependence. The strange-quark
masses employed in our simulations di↵er slightly from
the physical, tuned values a

24

m̃

phys

s

= 0.0379(11) and
a

32

m̃

phys

s

= 0.0280(7) [15]. To study the valence strange-
quark mass dependence, we calculated the B

s

! K form
factors on the a ⇡ 0.11 fm, am

l

= 0.005, ensemble with
two additional spectator-quark masses of a

24

m̃

s

= 0.033
and 0.043. Figure 10 shows the valence-quark mass
dependence of the B

s

! K form factors; we observe
the largest slopes for fk at p = (0, 0, 0) and for f? at
p = (1, 0, 0). Multiplication of these measured slopes
by the discrepancy between the simulated and tuned
strange-quark masses, �(m

s

) ⌘ (m̃
s

� m̃

phys

s

) = 0.004,
leads to estimates for the error due to mis-tuning the va-
lence strange-quark mass of about 0.1% for f

+

and below
this for f

0

(which we consider as negligible).
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for three of the four data sets, but we perform fits with
K = 3 in order to enable comparison of both the slopes
and curvatures with those of the form factor fB⇡

+

(q2) ob-
tained in the previous section. The numerical results for
the K = 3 fits to the individual experimental data sets,
as well from a combined fit to all experiments, are given
in Table XV. The fit to the BaBar 2010 data set has
a somewhat large �

2

/d.o.f. that stems from the highest
q

2 bin, for which the error on the measured di↵erential
branching fraction is small but the central value is low
with respect to the other points. The inconsistency of
the BaBar 2010 data leads the fit to all four experimental
measurements to have a somewhat low, but still reason-
able, p-value of 5%. Figure 15 shows the constraints on

the slope (b(1)
+

/b

(0)

+

) versus curvature (b(2)
+

/b

(0)

+

) from the
di↵erent experimental measurements, as well as from the
combined fit to all four measurements. The three most
recent measurements agree at the 2� level, but display
some tension with the BaBar 2010 result. Combining the
information from all four experimental analyses improves
the determination of the shape parameters significantly.

Because we do not impose any constraint on the sum
of the coe�cients

P
B

mn

b

m

b

n

, we can check to see
whether the experimental data is compatible with ex-
pectations from heavy-quark power counting for the size
of the series coe�cients. Taking the determination of
|V

ub

| = 3.63(12)⇥ 10�3 from CKM unitarity [6], we find
a value for

P
B

mn

b

m

b

n

⇠ 0.02 from the fit to all experi-
mental data. This is consistent with the prediction from
Eq. (52) taking a reasonable value for the heavy-quark
scale ⇤ ⇠ 1.1 GeV, and validates the prior central value
and width that we used to constrain

P
B

mn

b

m

b

n

in our
preferred z-fit of the lattice form factors in the previous
section.

Finally, before we fit the experimental and lattice data
together to obtain |V

ub

|, it is important to check that
their shapes are consistent. Figure 15 also shows the de-
termination of the slope and curvature from our calcula-
tion of fB⇡

+

(q2) (see Table XIII). The shapes of the lattice
form factors and the experimental data are in good agree-
ment, but the shape (as well as the overall normalization)
is determined more precisely by experiment. This sug-
gests that the error on |V

ub

| can be minimized by per-
forming a combined fit to the lattice and experimental
data, as we now show.

Table XVI shows the results for the BCL coe�cients
and |V

ub

| obtained from a combined fit of the experimen-
tal measurements for the B ! ⇡`⌫ di↵erential branching
fraction and the lattice determination of the form fac-
tor fB⇡

+

(q2), leaving the relative normalization |V
ub

| as a
free parameter to be determined in the fit. As in the
experiment-only z-fits above, we do not constrain the
sum of the coe�cients

P
B

mn

b

m

b

n

. We present results
from separate fits to each experimental data set, as well
as from a fit including all experimental data. The results
for |V

ub

| from fits to the di↵erent experimental data sets
agree within about 1�, and the p-value of the K = 3 fit
to all data is 6%. We also show results for truncations
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-3 -2 -1  0  1

b 2
 / 
b 0

b1 / b0

This work
BABAR 2012
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BELLE 2013
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All experiments

FIG. 15. Shape parameters b(1)
+

/b(0)
+

and b(2)
+

/b(0)
+

from K = 3

BCL fits to the B ! ⇡`⌫ form factor fB⇡
+

(q2) (filled ellipse)
and from experimental measurements of the B ! ⇡`⌫ branch-
ing fraction [1–4] (patterned and empty ellipses). The colored
ellipses show the constraints from the individual experiments,
while the black ellipse shows the constraint from all experi-
ments. For each determination, the inner and outer contours
show the 68% and 95% allowed confidence limits, respectively.

K = 3, 4, 5 to study the uncertainty due to truncating
the expansion in z. The errors on |V

ub

| remain the same
size as the number of fit parameters increase, and the
central value for the fit including all experimental data
is unchanged. We take our final result

|V
ub

| = 3.61(32)⇥ 10�3 (56)

from the fit to all experimental data with K = 3. The
quoted error on |V

ub

| is the total uncertainty, and in-
cludes both the theoretical error from the form factor
and the experimental error (as well as the uncertainty
from truncating the z-expansion). Figure 16 shows the
preferred K = 3 BCL z-fit used to obtain |V

ub

| plotted
as (1 � q

2

/m

2

B

⇤)f
+

(q2) vs. z (left) and as �B/�q

2 vs.
q

2 (right).
Although we cannot precisely disentangle the error

contributions, we can estimate the contribution to the
error on |V

ub

| from the lattice form-factor determination.
Our most precise synthetic data point has a total statis-
tical plus systematic uncertainty of 8.4%. If we assume
that this is the lattice contribution to the 8.9% error |V

ub

|
in Eq. (56), this suggests that the experimental error con-
tribution is approximately 2.8%.
The combined z-fit optimally combines the available

information from lattice and experiment in a model-
independent manner, thereby providing a determination
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FIG. 23. Top: theoretical calculations of the B ! ⇡`⌫ form factors from light-cone sum rules [61, 62], NLO perturbative
QCD [63], and (2+1)-flavor lattice QCD [25, 26]. Bottom: theoretical calculations of the Bs ! K`⌫ form factors from QCD
models [66–68] and (2+1)-flavor lattice QCD [29]. In all plots, the predictions for f

+

(q2 = 0) are displayed with a slight
horizontal o↵set for clarity.

to compute all possible Standard-Model observables for
these decays whenever they are needed for comparison
with experiment.
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Appendix A: Correlator fit results

Here we summarize the results for pion, kaon, B and
B

s

meson masses and three-point ratios from the corre-
lator fits described in Secs. III A and III B.


