SUSY DARK MAT TER IS DEAD.
LONG LIVE SUSY DARK
MAIT TER

Neal Weiner
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NATURALNESS, SUSY AND
THE HIGGS MASS
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SO WHAI DOES THIS TELL US
ABOUT SUSY DM/



Implications of a 125 GeV Higgs scalar for
LHC SUSY and neutralino dark matter searches

Howard Baer?, Vernon Barger’ and Azar Mustafayev®

ABSTRACT: The ATLAS and CMS collaborations have reported an excess of events in the
vy, ZZ4* — 40 and WW* search channels at an invariant mass m ~ 125 GeV, which could
be the first evidence for the long-awaited Higgs boson. We investigate the consequences of
requiring myp, ~ 125 GeV in both the mSUGRA and NUHM2 SUSY models. In mSUGRA,
large values of trilinear soft breaking parameter |Ag| are required, and universal scalar
mgy 2 0.8 TeV is favored so that we expect squark and slepton masses typically in the
multi-TeV range. This typically gives rise to an “effective SUSY” type of sparticle mass
spectrum. In this case, we expect gluino pair production as the dominant sparticle creation

reaction at LHC. For mg <

Y

5 TeV, the superpotential parameter y = 2 TeV and mg 2
0.8 TeV, greatly restricting neutralino annihilation mechanisms. These latter conclusions
are softened if mg ~ 10 — 20 TeV or if one proceeds to the NUHM2 model. The standard
neutralino abundance tends to be far above WMAP-measured values unless the neutralino
is higgsino-like. We remark upon possible non-standard (but perhaps more attractive)
cosmological scenarios which can bring the predicted dark matter abundance into accord
with the measured value, and discuss the implications for direct and indirect detection of
neutralino cold dark matter.
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WHAT IS SUSY DM

* A singlet, a doublet and a triplet with some specific couplings
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WHAT IS SUSY DM

* A singlet, a doublet and a triplet with some specific couplings

g x F
X \/ f



MAYBE IT'S NOT ALL THAT

Squark-gluino-neutralino model

BAD
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cLECTROWEAK ONLY
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LSP DARK MAT TER

* |f you tune your Initial conditions (e.g. CMSSM) LSP WIMPs
are often tuned

* If you give up on preconceived notions of unified soft breaking
barameters (“'chaotic SUSY"™), LSP dark matter is pretty easy




IMPLICATIONS FOR SUSY
x SPECTRA
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A SIMPLE, UNNATURAL
SCENARIO

* S0 SUSY looks tuned
* 1%, .176, something
* SO maybe we just embrace that

« Q:What Is the nicest scenario modulo this?



A SIMPLE, UNNATURAL
SCENARIO

» Usual approach to SUSY breaking
: i 1
SAL*@X XQQ =My

jd"-@xudu"‘ = m AN
CX)=6F

X Is a pure singlet!
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» Anomaly mediated SUSY breaking
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A SIMPLE, UNNATURAL
SCENARIO

» Anomaly mediated SUSY breaking

SA"@XJ”X QQ = M%

M= G ™
L]

Separation of ~ |00 between scalars and Inos

so what sets the scale?



DARK MAT TER

* The LSP generically (but not exclusively) the Wino

* To be DM or not overclose the universe mVW<2.5 TeV



THE SPECTRUM
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THE SPECTRUM
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THE SPECTRUM

M2 1 15 Tev . .
h\ég 1% Tev But this spectrum will

M 41.5TeV not be discovered at
the LHC
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THE SPECTRUM
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A NIGHTMARE SCENARIO?

* If nature s like this, Is that It for particle physics!



SQUEEZING THE SPECTRUM

In the presence of additional matter, anomaly
mediation can be modified

A .
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SQUEEZING THE SPECTRUM

In the presence of additional matter, anomaly
mediation can be modified

Nelson, NW



A MESSENGER IN ANOMALY
MEDIATION
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In general a squeezed spectrum



A NIGHTMARE SCENARIO?

* What is nature is not kind to us!



A NIGHTMARE SCENARIO?

* Direct detection: Triplet (Wino) has no coupling to Z, no tree
level coupling to Higgs

Nojiri et al; Cirelli + Strumia
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A NIGHTMARE SCENARIO?

*Projections based on

WIMP Mass [GeV/c”]
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Cross-section [cmz] (normalised to nucleon)

A NIGHTMARE SCENARIO?
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INDIRECT HANDLES

Bergstrom, Bringmann & Edsjo (2010) Bergstrom, Bringmann & Edsjo (2010)
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INDIRECT HANDLES
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MEASURING A MASS WITH
DIRECT DETECTION

« Can we set the scale for the next collider with a WIMP
search?



DIRECT DETECTION
UNCERTAINTIES
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DIRECT DETECTION
UNCERTAINTIES

dR i GBS T /OO f(v)
BN VF2E T,
dER e . g f?% ~ [ R] s U :

particle physics

PP: Type of interaction, mediator



DIRECT DETECTION
UNCERTAINT\ES

nuclear physms

particle physics %

PP: Type of interaction, mediator

NP: Form factor - when de Broglie wavelength of interaction is

comparable to nuclear size - resolve that it Is not a point particle
<C|2~ PRIMNER =~ Er~ |00 |<e\/) (Duda, Gondolo+Kemper 0608035)



DIRECT DETECTION
UNCERTAINTIES

nuclear physms
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particle physics astrophysics

PP: Type of interaction, mediator

NP: Form factor - when de Broglie wavelength of interaction is
comparable to nuclear size - resolve that it Is not a point particle
(qZN 2 MNER == ERN 100 |<e\/) (Duda, Gondolo+Kemper 0608035)

AP: How many particles are there at a given velocity in the Earth
frame



DIRECT DETECTION
UNCERTAINTIES

nuclear physms

e e
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particle physics astrophysics

PP: Type of interaction, mediator

NP: Form factor - when de Broglie wavelength of interaction is
comparable to nuclear size - resolve that it Is not a point particle
(qZN 2 MNER == ERN 100 |<e\/) (Duda, Gondolo+Kemper 0608035)

AP: How many particles are there at a given velocity in the Earth
frame

* The only relevance of WIMP mass in DD exps is the reduced
Mass



Halo restframe Earth restframe (Summer)
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Kuhlen, et al
MB generally good near the peak, generally not near the tall



TWO KEY POINTS
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TWO KEY POINTS

g(vmzn) i /OO d3?] f(Vat)
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1) all the energy depenhce S In two functions




TWO KEY POINTS
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1) all the energy depennce S In two functions
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MEASURING WIMPS

* Suppose you want to compare two experiments, | and 2

[Ellow,Elhigh] => [VI’Iowmim Vl’highmin]

map the energy range studied in experiment | to a velocity
space range

map velocity space range back to energy space for
experiment 2

[VI’Iowmin, Vl’highmin] => [Ezlow,Ezhigh]

we Now have an energy range where the
experiments are studying the same particles

[i'low;"lﬁgh] L= [izlmu,'zugh]



Invert:
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A direct prediction of the rate
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only on mass



HOW DOABLE IS THIS?

* In progress, but hara



WHATI SUSY DOES FOR YOU

* A singlet, a doublet and a triplet with some specific couplings

g x F
X \/ f



WHATI SUSY DOES FOR YOU

* Baryon and lepton number violation operators

LLE UuDD LH
QLD

* Hence, a parity that we invoke by hand
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SUSY PORTAL DARK MAT TER
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Even with interaction strengths ~ 10% x SM can
maintain equilibrium
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SUSY PORTAL DARK MAT TER
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SUSY PORTAL DARK MAT TER
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e e A
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Better chance of seeing with a vector portal
mass can be anything - not necessarily the L5P



THE NMSSM AND DARK

MAT TER
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THE NMSSM
W=2SH.H4



g NMSSM




g NMSSM

A complete standard model singlet?

tadpoles! domain walls?



THE NMSSM
W=2SH.H4
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TI—IE NMSSM

Yukawa couplings run weak at low energies
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TI—IE NMSSM

Yukawa couplings run weak at low energies

But gauge interactions keep It from

B°|3 running too small )(Mbm)
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TI—IE NMSSM

Yukawa couplings run weak at Iovv energles

'M(\, “Grechiins

U
B [ S ‘)‘(Mbw)
Md@u / T only the gauge

coupling were larger!

TeV

Meur



REEXAMINING NMSSM

W=2SH.H4 7_
S CYBINT



REEXAM\N\NG NMSSM




REEXAMINING NMSSM

» quartic 1s (hy ha)”™ 2 V\ﬂ 1 ) L ,




REEXAMINING NMSSM

» quartic 1s (hy ha)”™ 2 g) V 1 ) L \ |

* must be at small tan beta
=> hg has no large couplings




REEXAMINING NMSSM

» quartic 1s (hy ha)”™ 2 g) V 1 ) L \ |

* must be at small tan beta
=> hg has no large couplings

* why are we trying to identify that thing with hq !
=> because It's there



REEXAMINING NMSSM

» quartic 1s (hy ha)”™ 2 V\ﬂ 1 ) l-' ,

* must be at small tan beta
=> hg has no large couplings

* why are we trying to identify that thing with hq !
=> because It's there

- Why not think of it as something totally different?
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A SISTER HIGGS

* proposal: hq 1s not hg, It Is something else

* 24 has no direct couplings to any fermions,

» “sister Higgs': Higgs that participates in EVWSB but without
tree level renormalizeable couplings to SM fermions
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D. Alves, B Fox, NW In progress



WHY A SISTER HIGGS

SHH = PH.S 4



WHY A SISTER HIGGS
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THE HIGGS MASS WITH A
SISTER

mstop=1/4
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SISTER HIGGS

» Sister Gauge group may be broken to contain a residual U( 1)
» Lightest Sister Particle is then stable

* =>'Ino like DM but not In cascades



SUSY AND NEW SYMME TRIES
RPV

* The lack of MET signals may tell us

» SUSY Is heavy
B A siSqlieczed
B ®Oosicihidden (€., REV)

@R ol these things tell us that there s no SUSIEIDIM



CONCLUSIONS

* The absence of spartners and the high Higgs mass may be
telling us something:

* A “chaotic” SUSY model can easily have LSPs at low masses

» A "decoupled color” model can have electroweakinos at a light
scale

* A "natural” unnatural SUSY model still have gauginos at the
leV scale



CONCLUSIONS

* In the “nightmare” scenario discovery Is possible through
* gluinos (In squeezed spectrum)
* gluinos (for non-DM or non-thermal winos)
» direct detection (even at the nightmare points)

* Higgs may be telling us the weak scale I1s more interesting

MEIEstanle particles!

B aat s SUSY DM?
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Various physics can move It up or down -
but this Is a natural starting point




