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FIG. 2: The one-loop diagram providing the LO, O(↵e/L), FV correction to the mass of a charged scalar
particle. The solid straight line denotes a scalar particle, while the wavy line denotes a photon.

The LO, O(↵e/L), correction to the mass of a charged scalar particle in FV, �m�, is from the
one-loop diagram shown in Fig. 2. While most simply calculated in Coulomb gauge, the diagram
can be calculated in any gauge and, in agreement with previous determinations [16], is

�m

(LO)
� =

↵eQ
2

2⇡L

X̂

n 6=0

1

|n|2 =
↵eQ

2

2L
c1 , (6)

with c1 = �2.83729. The sum,
P̂

, represents the di↵erence between the sum over the FV modes
and the infinite-volume integral, e.g.

1

L3

X̂

k 6=0

f(k) ⌘ 1

L3

X

k 6=0

f(k) �
Z

d

3k

(2⇡)3
f(k) , (7)

for an arbitrary function f(k), and is therefore finite. This shift is a power-law in 1/L as expected,
and provides a reduction in the mass of the hadron. As the infinite-volume Coulomb interaction
increases the mass, and the FV result is obtained from the modes that satisfy the PBCs (minus
the zero modes), the sign of the correction is also expected. The result in Eq. (6) is nothing more
than the di↵erence between the FV and infinite-volume contribution to the Coulomb self-energy
of a charged point particle, as seen from Eq. (2), U(0, L)/2.
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FIG. 3: Diagrams contributing at NLO, O(↵e/m�L2), in the 1/L expansion. The crossed circle denotes an
insertion of the |D|2/2m� operator in the scalar QED Lagrange density, Eq. (4).
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This NLO recoil correction agrees with previous calculations [11, 16], and is the highest order in
the 1/L expansion to which these FV e↵ects have been previously determined. 7
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FIG. 4: (a-d) One-loop diagrams giving rise to the recoil corrections of O(↵e/m

2
�L3). The crossed circle

denotes an insertion of the |D|2/2m� operator. (e,f) One-loop diagrams providing the leading contribution
from the charge radius of the scalar hadron, ⇠ ↵ehr2i�/L3. The solid square denotes an insertion of the
charge-radius operator in the scalar Lagrange density, Eq. (4).
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recoil correction of the form ⇠ ↵e/m
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�L3 and one is from the charge radius, ⇠ ↵ehr2i�/L3. An

evaluation of the one-loop diagrams giving rise to the recoil contributions, Fig. 4(a-d), shows that
while individual diagrams are generally non-zero for a given gauge, their sum vanishes in any
gauge. Therefore, there are no contributions of the form ↵e/m

2
�L3 to the mass of �. In contrast,

the leading contribution from the charge radius of the scalar particle, resulting from the one-loop
diagrams shown in Fig. 4(e,f) gives a contribution of the form
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contributions from the electric and magnetic polarizability operators, ⇠ ↵̃
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M /L4, and

contributions from the cM operator, Eq. (4). There are two distinct sets of recoil corrections at
this order. One set is from diagrams involving three insertions of the |D|2/2m� operator, as shown
in Fig. 5(a-d), and the other is from a single insertion of the |D|4/8m

3
� operator, shown in Fig. 5(e,f).

The sum of diagrams contributing to each set vanish, and so there are no contributions of the form
↵e/m

3
�L4. The other contributions, that include the electric and magnetic polarizabilities, arise

7 The O(↵e) calculations of Ref. [16] at NLO in �PT and PQ�PT do not include the full contributions from the
meson charge radius and polarizabilities, but are perturbatively close. This is in contrast to the NREFT calculations
presented in this work where the low-energy coe�cients are matched to these quantities order-by-order in ↵e, and
provide the result at any given order in 1/L as an expansion in ↵e.
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analogous to (g) provides the leading contribution from the cM operator at O(↵e/m�L4).
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where potential complications due to the electromagnetic decay of the ⇡

0 via the anomaly have been
neglected . The shifts of the charged and neutral kaons have the same form, with m⇡±,0 ! mK±,0 ,
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on the charge radii and polarizabilities of the pions and kaons, numerical estimates of the FV
corrections can be performed at N3LO. The LO and NLO contributions are dictated by only the
charge and mass of the meson. The N2LO contribution depends upon the charge and charge radius,
which, for the charged mesons, are known experimentally to be [52],

p
hr2i⇡+ = 0.672 ± 0.008 fm ,

p
hr2iK+ = 0.560 ± 0.031 fm . (14)

The N3LO contribution from the electric and magnetic polarizabilities of the mesons depends upon
their sum. The Baldin sum rule determines the charged pion combination, while the result of a
two-loop �PT calculation is used for the neutral pion combination [53],

↵

(⇡+)
E + �

(⇡+)
M = (0.39 ± 0.04) ⇥ 10�4 fm3

, ↵

(⇡0)
E + �

(⇡0)
M = (1.1 ± 0.3) ⇥ 10�4 fm3

. (15)

Unfortunately, little is known about the polarizabilities of the kaons, and so naive dimensional

analysis is used to provide an estimate of their contribution [53], ↵

(K+)
E + �

(K+)
M , ↵

(K0)
E + �

(K0)
M =

(1 ± 1) ⇥ 10�4 fm3. With these values, along with their experimentally measured masses, the
expected FV corrections to the charged meson masses are shown in Fig. 6 and to the neutral
meson masses in Fig. 7. 8
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FIG. 6: The FV QED correction to the mass squared of a charged pion (left panel) and kaon (right panel)
at rest in a FV at the physical pion mass. The leading contribution is due to their electric charge, and
scales as 1/L. The 1�-uncertainty bands associated with each order in the expansion are determined from
the uncertainties in the experimental and theoretical inputs.

In a volume with L = 4 fm, the FV QED mass shift of a charged meson is approximately
0.5 MeV. Figure 6 shows that for volumes with L>⇠ 4 fm, the meson charge is responsible for
essentially all of the FV modifications, with their compositeness making only a small contribution,
i.e. the di↵erences between the NLO and N2LO mass shifts are small. For the neutral mesons, the
contribution from the polarizabilities is very small, but with substantial uncertainty. It is worth
re-emphasizing that in forming these estimates of the QED power-law corrections, exponential
corrections of the form e

�m⇡L have been neglected.

8 When comparing with previous results one should note that the squared mass shift of the ⇡+, as an example, due
to FV QED is

�m2
⇡+ = (m⇡+ + �m⇡+)

2 �m2
⇡+ = 2m⇡+ �m⇡+ + O(↵2

e) ,

As is evident, the leading contribution to the mass squared scales as 1/L, contrary to a recent suggestion in the
literature [10] of 1/L2. Note that the quantity shown in Fig. 6 and Fig. 7 is �m2

� as opposed to �m�, as it is this
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FIG. 7: The FV QED correction to the mass squared of a neutral pion (left panel) and kaon (right panel) at
rest in a FV at the physical pion mass. The leading contributions are from their polarizabilities, and scale
as 1/L4. The 1�-uncertainty bands associated with each order in the expansion are determined from the
uncertainties in the experimental and theoretical inputs.

IV. NRQED FOR THE BARYONS AND J = 1
2 NUCLEI

In the case of baryons and J = 1
2 nuclei, the method for determining the FV QED corrections is

analogous to that for the mesons, described in the previous section, but modified to include the
e↵ects of spin and the reduction from a four-component to a two-component spinor. The low-energy
EFT describing the interactions between the nucleons and the electromagnetic field is NRQED,
but enhanced to include the compositeness of the nucleon. A nice review of NRQED, including the
contributions from the non point-like structure of the nucleon, can be found in Ref. [54], and the
relevant terms in the NRQED Lagrange density for a N3LO calculation are [19–26, 28, 45, 51, 54]
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where cF = Q +  + O(↵e) is the coe�cient of the magnetic-moment interaction, with  related
to the anomalous magnetic moment of  , cD = Q + 4

3M

2
 hr2i + O(↵e) contains the leading

charge-radius contribution, cS = 2cF � Q is the coe�cient of the spin-orbit interaction and cM =
(cD � cF )/2. The coe�cients of the |E|2 and |B|2 terms contain the polarizabilities, 1/M and
1/M
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that enters into the determination of the light-quark masses from LQCD calculations.
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FIG. 7: The FV QED correction to the mass squared of a neutral pion (left panel) and kaon (right panel) at
rest in a FV at the physical pion mass. The leading contributions are from their polarizabilities, and scale
as 1/L4. The 1�-uncertainty bands associated with each order in the expansion are determined from the
uncertainties in the experimental and theoretical inputs.
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The operators with coe�cients cW1 , cW2 and cp0p, given in Ref. [53], do not contribute to the FV
corrections at this order. The ellipsis denote terms that are higher orders in 1/M and 1/⇤�. Two
insertions of the magnetic-moment operator provide its leading contribution, as shown in Fig. 8,
giving rise to O(↵e/L

3) corrections to the mass of spin-1
2 particles. Although a single insertion

of the cS operator seems to contribute at N2LO, a straightforward calculation shows that this
contribution is vanishing. At N3LO, in addition to the operators contributing to the scalar case,
one needs to take into account a diagram with two insertions of the magnetic-moment operator and
one insertion of the |D|2/2m operator, plus diagrams with insertions of the cF and cS operators,
as shown in Fig. 9. Without replicating the detail presented in the previous section, the sum of

FIG. 8: The N2LO, O
⇣
↵e/M

2
 L

3
⌘
, FV QED correction to the mass of a baryon from its magnetic moment.

The crossed square denotes an insertion of the magnetic moment operator given in Eq. (16).

(a) (b) (c)

FIG. 9: a) The N3LO, O
⇣
↵e/M

3
 L

4
⌘

FV QED correction to the mass of a baryon from its magnetic moment.

The crossed square denotes an insertion of the magnetic moment operator given in Eq. (16) while the crossed
circle denotes an insertion from the |D|2/2m operator. b) Other non-vanishing contributions at this order
arise from insertions of the cF and cS operators as given in Eq. (16). The black circles denote insertions of
the cS operator.

the contributions to the FV self-energy modification of a composite fermion, up to N3LO, is9
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9 As first noticed by the authors of Ref. [54], performing a non-relativistic expansion of the QED self-energy diagram
for a point-like particle, although reproduces the result obtained via a NREFT at LO and NLO, naively appears to
be a factor of two bigger than the NNLO (and all higher orders) result presented in this paper for both scalar and
spinor QED. We speculate that the source of discrepancy is due to separating the range of (scalar) QED momentum
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FIG. 9: The FV QED correction to the mass of the proton (left panel) and neutron (right panel) at rest
in a FV at the physical pion mass. The leading contribution to the proton mass shift is due to its electric
charge, and scales as 1/L, while the leading contribution to the neutron mass shift is due to its magnetic
moment, and scales as 1/L

3. The 1 � � uncertainty bands associated with each order in the expansion are
determined from the uncertainties in the experimental and theoretical inputs.

There is an interesting di↵erence between the meson and baryon FV modifications. As the
nucleon mass is approximately seven times the pion mass, and twice the kaon mass, the recoil cor-
rections are suppressed compared with those of the mesons. Further, the nucleons are significantly
“softer” than the mesons, as evidenced by their polarizabilities. However, the NLO recoil correc-
tions to the proton mass are of approximately the same size as the N2LO structure contributions,
as seen in Fig. 9.

V. NUCLEI

A small number of LQCD collaborations have been calculating the binding of light nuclei and hy-
pernuclei at unphysical light-quark masses in the isospin limit and without QED [55–64]. However,
it is known that as the atomic number of a nucleus increases, the Coulomb energy increases with
the square of its charge, and significantly reduces the binding of large nuclei. The simplest nucleus
is the deuteron, but as it is weakly bound at the physical light-quark masses, and consequently
unnaturally large, it is likely that it will be easier for LQCD collaborations to compute other light
nuclei, such as 4He, rather than the deuteron.

A NREFT for vector QED shares the features of the NREFTs for scalars and fermions that
are relevant for the current analysis. One di↵erence is in the magnetic moment contribution, and
another is the contribution from the quadrupole interaction. The FV corrections to the deuteron
mass and binding energy, �Bd, are shown in Fig. 10, where the experimentally determined charge
radius, magnetic moment and polarizabilities have been used. Due to the large size of the deuteron,
and its large polarizability, the 1/L expansion converges slowly in modest volumes, and it appears
that L>⇠ 12 fm is required for a reliable determination of the QED FV e↵ects, consistent with
the size of volumes required to extract the binding and S-matrix parameters of the deuteron in
the absence of QED [65]. The QED FV corrections to the deuteron binding energy are seen to be
significantly smaller than its total energy in large volumes, largely because the leading contribution
to the deuteron and to the proton cancel. As the deuteron has spin and parity of J

⇡ = 1+, it also
possesses a quadrupole moment which contributes to the FV QED e↵ects at O �

1/L5
�

through two
insertions.

The NREFTs used to study the FV contributions to the mass of the pions in the previous
section also apply to the 4He nucleus, and the FV corrections to the mass of 4He and its binding
energy, �B4He, are shown in Fig. 11. Unlike the deuteron, the leading FV corrections to 4He do

11

4 5 6 7 8 9 10-0.6

-0.4

-0.2

0

L HfmL

dM
p
HMe

V
L

NNNLO
NNLO
NLO
LO

4 5 6 7 8 9 100

0.01

0.02

0.03

L HfmL
dM

n
HMe

V
L

NNNLO
NNLO
NLO
LO

FIG. 9: The FV QED correction to the mass of the proton (left panel) and neutron (right panel) at rest
in a FV at the physical pion mass. The leading contribution to the proton mass shift is due to its electric
charge, and scales as 1/L, while the leading contribution to the neutron mass shift is due to its magnetic
moment, and scales as 1/L

3. The 1 � � uncertainty bands associated with each order in the expansion are
determined from the uncertainties in the experimental and theoretical inputs.

There is an interesting di↵erence between the meson and baryon FV modifications. As the
nucleon mass is approximately seven times the pion mass, and twice the kaon mass, the recoil cor-
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tions to the proton mass are of approximately the same size as the N2LO structure contributions,
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A small number of LQCD collaborations have been calculating the binding of light nuclei and hy-
pernuclei at unphysical light-quark masses in the isospin limit and without QED [55–64]. However,
it is known that as the atomic number of a nucleus increases, the Coulomb energy increases with
the square of its charge, and significantly reduces the binding of large nuclei. The simplest nucleus
is the deuteron, but as it is weakly bound at the physical light-quark masses, and consequently
unnaturally large, it is likely that it will be easier for LQCD collaborations to compute other light
nuclei, such as 4He, rather than the deuteron.

A NREFT for vector QED shares the features of the NREFTs for scalars and fermions that
are relevant for the current analysis. One di↵erence is in the magnetic moment contribution, and
another is the contribution from the quadrupole interaction. The FV corrections to the deuteron
mass and binding energy, �Bd, are shown in Fig. 10, where the experimentally determined charge
radius, magnetic moment and polarizabilities have been used. Due to the large size of the deuteron,
and its large polarizability, the 1/L expansion converges slowly in modest volumes, and it appears
that L>⇠ 12 fm is required for a reliable determination of the QED FV e↵ects, consistent with
the size of volumes required to extract the binding and S-matrix parameters of the deuteron in
the absence of QED [65]. The QED FV corrections to the deuteron binding energy are seen to be
significantly smaller than its total energy in large volumes, largely because the leading contribution
to the deuteron and to the proton cancel. As the deuteron has spin and parity of J
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FIG. 10: The left panel shows the FV QED correction to the mass of the deuteron at rest in a FV at the
physical pion mass. The leading contribution is from its electric charges, and scales as 1/L. The right panel
shows the FV QED correction to the deuteron binding energy for which the 1/L contributions cancel. The
1�-uncertainty bands associated with each order in the expansion are determined from the uncertainties in
the experimental and theoretical inputs.

not cancel in the binding energy due to the interactions between the two protons, but are reduced
by a factor of two.
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FIG. 11: The left panel shows the FV QED correction to the mass of 4He at rest in a FV at the physical
pion mass. The leading contribution is from its electric charge, and scales as 1/L. The right panel shows
the FV QED correction to the 4He binding energy. The uncertainty bands associated with each order in the
expansion are determined from the uncertainties in the experimental and theoretical inputs.

VI. ANOMALOUS MAGNETIC MOMENT OF THE MUON

Experimental and theoretical determinations of the anomalous magnetic moment of the muon are
providing a stringent test of the Standard Model of particle physics. The current discrepancy
between the theoretical [66, 67] and experimental determinations [68], at the level of 2.9 to 3.6
�, but not 5�, cannot yet be interpreted as a signal of new physics. As upcoming experiments,
Fermilab E989 and J-PARC E34, plan to reduce the experimental uncertainty down to 0.14 ppm,
theoretical calculations of non-perturbative hadronic contributions must be refined in the short
term. LQCD is expected to contribute to improving the theoretical prediction of the standard
model, and several recent e↵orts have been directed at obtaining the hadronic vacuum-polarization
and hadronic light-by-light contributions to the muon g � 2 [69–79]. Theoretical challenges facing
these calculations have been identified and will be addressed during the next few years.
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FIG. 12: The left panel shows the FV QED correction to the mass of 4He at rest in a FV at the physical
pion mass. The leading contribution is from its electric charge, and scales as 1/L. The right panel shows
the FV QED correction to the 4He binding energy. The uncertainty bands associated with each order in the
expansion are determined from the uncertainties in the experimental and theoretical inputs.

VI. ANOMALOUS MAGNETIC MOMENT OF THE MUON

Experimental and theoretical determinations of the anomalous magnetic moment of the muon are
providing a stringent test of the Standard Model of particle physics. The current discrepancy
between the theoretical [66, 67] and experimental determinations [68], at the level of 2.9 to 3.6
�, but not 5�, cannot yet be interpreted as a signal of new physics. As upcoming experiments,
Fermilab E989 and J-PARC E34, plan to reduce the experimental uncertainty down to 0.14 ppm,
theoretical calculations of non-perturbative hadronic contributions must be refined in the short
term. LQCD is expected to contribute to improving the theoretical prediction of the standard
model, and several recent e↵orts have been directed at obtaining the hadronic vacuum-polarization
and hadronic light-by-light contributions to the muon g � 2 [69–79]. Theoretical challenges facing
these calculations have been identified and will be addressed during the next few years.

Here we show that the most naive scheme to obtain the magnetic moment of the muon by
a direct calculation has volume e↵ects that scale as O(↵e/(mµL)), requiring unrealistically large
volumes to achieve the precision required to be sensitive to new physics. A detailed exploration
of the issues related to extracting matrix elements of the electromagnetic current from LQCD
calculations can be found in Ref. [80]. Although it might appear that the leading contribution
to the FV modification of the magnetic moment of the muon in NRQED will arise from one-loop
diagrams involving one insertion of the the magnetic moment operator, such contributions vanish.
In fact, the leading 1/(mµL) FV correction comes from the tree-level insertion of the magnetic-
moment operator multiplied by a factor of E/mµ, where E is the energy of the muon, giving rise
to, at O (↵e),

µ ⌘ gµ � 2

2
=
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2⇡


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⇡c1

mµL
+ O
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m

2
µL2

◆�
. (21)

The factor of E/mµ arises in matching the NR theory to QED [25], in which each external leg in

the NR theory must be accompanied by a factor of
q

E
mµ

. Since E = mµ + e2

8⇡
c1
L + · · · , it can be

readily seen that the e↵ective tree-level vertex multiplied by this normalization factor results in the
µ given in Eq. (21). This contribution is present in the LO QED contribution to the anomalous
magnetic moment (Schwinger term) when calculated in a cubic FV with PBCs and the photon
zero mode removed.

To better understand the severity of the volume corrections to such a naive calculation, it is
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Figure 2: Mass splittings in channels that are stable under the strong and electromagnetic interactions. Both
these interactions are fully unquenched in our 1+1+1+1 flavor calculation. The horizontal lines are the experi-
mental values and the grey shaded regions represent the experimental error [29]. Our results are shown by red
dots with their uncertainties. The error bars are the squared sums of the statistical and systematic errors. The
results for the �M

N
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mass splittings are post-dictions, in the sense that their values are known
experimentally with higher precision than from our calculation. On the other hand, our calculations yields
�M⌅, �M⌅cc splittings and the Coleman-Glashow difference �CG which have either not been measured in
experiment or are measured with less precision than obtained here. This feature is represented by a blue shaded
region around the label.
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There is an interesting di↵erence between the meson and baryon FV modifications. As the
nucleon mass is approximately seven times the pion mass, and twice the kaon mass, the recoil cor-
rections are suppressed compared with those of the mesons. Further, the nucleons are significantly
“softer” than the mesons, as evidenced by their polarizabilities. However, the NLO recoil correc-
tions to the proton mass are of approximately the same size as the N2LO structure contributions,
as seen in Fig. 9.

V. NUCLEI

A small number of LQCD collaborations have been calculating the binding of light nuclei and hy-
pernuclei at unphysical light-quark masses in the isospin limit and without QED [55–64]. However,
it is known that as the atomic number of a nucleus increases, the Coulomb energy increases with
the square of its charge, and significantly reduces the binding of large nuclei. The simplest nucleus
is the deuteron, but as it is weakly bound at the physical light-quark masses, and consequently
unnaturally large, it is likely that it will be easier for LQCD collaborations to compute other light
nuclei, such as 4He, rather than the deuteron.

A NREFT for vector QED shares the features of the NREFTs for scalars and fermions that
are relevant for the current analysis. One di↵erence is in the magnetic moment contribution, and
another is the contribution from the quadrupole interaction. The FV corrections to the deuteron
mass and binding energy, �Bd, are shown in Fig. 10, where the experimentally determined charge
radius, magnetic moment and polarizabilities have been used. Due to the large size of the deuteron,
and its large polarizability, the 1/L expansion converges slowly in modest volumes, and it appears
that L>⇠ 12 fm is required for a reliable determination of the QED FV e↵ects, consistent with
the size of volumes required to extract the binding and S-matrix parameters of the deuteron in
the absence of QED [65]. The QED FV corrections to the deuteron binding energy are seen to be
significantly smaller than its total energy in large volumes, largely because the leading contribution
to the deuteron and to the proton cancel. As the deuteron has spin and parity of J

⇡ = 1+, it also
possesses a quadrupole moment which contributes to the FV QED e↵ects at O �
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through two
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The NREFTs used to study the FV contributions to the mass of the pions in the previous
section also apply to the 4He nucleus, and the FV corrections to the mass of 4He and its binding
energy, �B4He, are shown in Fig. 11. Unlike the deuteron, the leading FV corrections to 4He do
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