Brian Page: Accessing Gluon Polarization with Di-Jets / Present and Future
→
US/Eastern
Universe
Universe
Description
Despite extensive theoretical and experimental effort, a detailed understanding of how the proton spin is built up from the spins and orbital angular momenta of its constituents remains elusive. Polarized fixed-target deep inelastic scattering data has constrained the contribution from quark and anti-quark helicities to be roughly 30% for parton momentum fractions greater than 10^-3, while inclusive jet and $\pi^0$ asymmetry results from the STAR and PHENIX experiments at RHIC have placed strong constraints on the gluon helicity contribution for momentum fractions greater than 0.05. This talk will detail the extension of STAR inclusive jet measurements to correlated di-jet measurements, which better constrain the initial partonic kinematics. Recently released di-jet asymmetry results from STAR will be presented and the status of future measurements will be discussed. Di-jet asymmetry measurements will also play an important role in constraining the gluon helicity contribution to the proton spin at a future Electron-Ion Collider, and the prospects for such measurements will be outlined.