***ATTENTION Indico Users***

Notice: Maintenance on 6/19

Please see the News section for more information.

Jun 24 – 28, 2019
US/Eastern timezone
5th International Conference on the Initial Stages in High-Energy Nuclear Collisions

Heavy electroweak boson production in Pb+Pb collisions with ATLAS

Jun 25, 2019, 2:20 PM
20m
329 (Pupin)

329

Pupin

Oral nPDF, cold matter effects Parallel: nPDF/CNM

Speaker

Mirta Dumancic (Weizmann Institute of Science)

Description

Electroweak bosons provide a unique opportunity to extract the information about the beginning of the temporal evolution of the heavy-ion collision system and understand how the cold nuclear matter effects influence the observables that are measured in heavy-ion collisions. $Z$ and $W$ bosons decaying in leptonic channels are unaffected by the presence of the quark-gluon plasma and carry the information from the time when bosons were created, i.e. from the moment of the collision itself. Measurement of $Z$ and $W$ bosons allows to quantify the modification of the nuclear parton distribution functions and verify our understanding of the geometry of the colliding nuclei.
In the 2015 heavy-ion data-taking period at the LHC, the ATLAS experiment obtained 0.49/nb of the Pb+Pb data and 25/pb of the proton-proton data at the centre of mass energy of 5.02 TeV. The fully analysed data presented in this talk addresses the nuclear modification of the parton distribution functions PDF at a new level of precision. Comparison between the lead-lead and proton-proton systems gives an opportunity to subject the Glauber model used by all heavy ion experiments to a stringent test performed over a wide range of collision centralities.

Primary author

Presentation materials