Abstract:
I will present an alternative approach for a high-energy high-luminosity electron-positron collider. Present designs for high-energy electron-positron colliders are either based on two storage rings with 100 km circumference with a maximum CM energy of 365 GeV or two large linear accelerators with a high energy reach but lower luminosity, especially at the lower initial CM energies. A collider based on storage rings has a high electric power consumption required to compensate for the beam energy losses from the 100 MW of synchrotron radiation power. Using an Energy Recovery Linac (ERL) located in the same-size 100 km tunnel would greatly reduce the beam energy losses while providing higher luminosity in this high-energy collider. Furthermore, this approach could allow for colliding fully polarized electron and positron beams and for extending the CM energy to 600 GeV, which would enable double-Higgs production and the production and measurements of the top Yukawa coupling.
Dmitri Denisov / George Redlinger