***ATTENTION Indico Users***

Notice: Maintenance on 6/19

Please see the News section for more information.

21–23 Jun 2023
Center for Frontiers in Nuclear Science, Stony Brook University
US/Eastern timezone

Disentangling long and short distances in momentum-space TMDs

21 Jun 2023, 16:00
30m
Center for Frontiers in Nuclear Science, Stony Brook University

Center for Frontiers in Nuclear Science, Stony Brook University

Department of Physics and Astronomy Stony Brook University Stony Brook, NY 11794-3800

Speaker

Zhiquan Sun (MIT)

Description

The extraction of nonperturbative TMD physics is made challenging by prescriptions that shield the Landau pole, which entangle long- and short-distance contributions in momentum space. The use of different prescriptions then makes the comparison of fit results for underlying nonperturbative contributions not meaningful on their own. We propose a model-independent method to restrict momentum-space observables to the perturbative domain. This method is based on a set of integral functionals that act linearly on terms in the conventional position-space operator product expansion (OPE). Artifacts from the truncation of the integral can be systematically pushed to higher powers in $\Lambda_\mathrm{QCD} / k_T$. We demonstrate that this method can be used to compute the cumulative integral of TMD PDFs over $k_T \leq k_T^\mathrm{cut}$ in terms of collinear PDFs, accounting for both radiative corrections and evolution effects. This yields a systematic way of correcting the naive picture where the TMD PDF integrates to a collinear PDF, and for unpolarized quark distributions we find that when renormalization scales are chosen near $k_T^\mathrm{cut}$, such corrections are a percent-level effect. We also show that, when supplemented with experimental data and improved perturbative inputs, our integral functionals will enable model-independent limits to be put on the non-perturbative OPE contributions to the Collins-Soper kernel and intrinsic TMD distributions.

Primary authors

Presentation materials