Proton Orbital Angular Momentum at Small 𝑥

24 Mar 2020, 14:48
18m
Brooklyn, NY

Brooklyn, NY

333 Adams Street, Brooklyn, New York 11201, USA
Contributed Talk Small-x, Diffraction and Vector Mesons Joint Session: WG2+WG5

Speaker

Yuri Kovchegov (The Ohio State University)

Description

We determine the small Bjorken $x$ asymptotics of the quark and gluon orbital angular momentum (OAM) distributions in the proton in the double-logarithmic approximation (DLA), which resums powers of $\alpha_s \ln^2 (1/x)$ with $\alpha_s$ the strong coupling constant. Starting with the operator definitions for the quark and gluon OAM, we simplify them at small $x$, relating them, respectively, to the polarized dipole amplitudes for the quark and gluon helicities defined in our earlier works. Using the small-$x$ evolution equations derived for these polarized dipole amplitudes earlier we arrive at the following small-$x$ asymptotics of the quark and gluon OAM distributions in the large-$N_c$ limit:
$L_{q + \bar{q}} (x, Q^2) = - \Delta \Sigma (x, Q^2) \sim \left(\frac{1}{x}\right)^{\frac{4}{\sqrt{3}} \, \sqrt{\frac{\alpha_s \, N_c}{2 \pi}} }$ ,
$L_G (x, Q^2) \sim \Delta G (x, Q^2) \sim \left(\frac{1}{x}\right)^{\frac{13}{4 \sqrt{3}} \, \sqrt{\frac{\alpha_s \, N_c}{2 \pi}}}$.

Primary author

Yuri Kovchegov (The Ohio State University)

Presentation materials

There are no materials yet.