Mar 23 – 27, 2020
Brooklyn, NY
US/Eastern timezone

Recent ATLAS measurements of correlations in Pb+Pb and Xe+Xe collisions

Mar 26, 2020, 9:44 AM
22m
Brooklyn, NY

Brooklyn, NY

333 Adams Street, Brooklyn, New York 11201, USA
Contributed Talk QCD with Heavy Flavors and Hadronic Final States QCD with Heavy Flavors and Hadronic Final States

Speaker

Arabinda BEHERA

Description

ATLAS measurements of flow harmonics ($v_n$) and their fluctuations in Pb+Pb and Xe+Xe collisions covering a wide range of transverse momenta, pseudorapidity and collision centrality are presented. The measurements are performed using data from Xe+Xe collisions at 5.44 TeV and Pb+Pb collisions at 2.76 and 5.02 TeV. The $v_{n}$ are measured up to $n=6$ using the two-particle correlations, multi-particle cumulants, and scalar product methods. The $v_{n}$ measurements are also performed using a non-flow subtraction technique that was developed for flow measurements in $pp$ and $p$+Pb collisions. This non-flow subtraction is found to have a significant effect on the measured $v_n$ at high-$p_T$ and in peripheral collisions. A universal scaling in the $p_{T}$ dependence of the $v_{n}$ is observed for both systems. Measurements of correlations between the $v_n$ for different order $n$, studied with three- and four-particle mixed-harmonic cumulants, are also presented, and contributions to these correlations from ``centrality fluctuations'' are also discussed.

Measurements of longitudinal flow decorrelations involving two- and four-particle correlations for $v_{2}$ and $v_{3}$ in Xe+Xe and Pb+Pb collisions are also presented and compared with predictions from theoretical calculations. The four-particle decorrelation is found to not factorize as a product of two-particle decorrelations. The ability of such measurements to distinguish between different models of initial geometry and to reduce the uncertainty in determining the effective shear-viscosity to entropy-density ratio of the QGP is demonstrated.

Primary authors

Presentation materials

There are no materials yet.