Conveners
Future Experiments: Parallel Sessions 1
- Salvatore Fazio (Brookhaven National Laboratory)
- Markus Diefenthaler (Jefferson Lab)
- Daniel Britzger (Max-Planck-Institut für Physik München)
Future Experiments: Parallel Sessions 2
- Markus Diefenthaler (Jefferson Lab)
- Daniel Britzger (Max-Planck-Institut für Physik München)
- Salvatore Fazio (Brookhaven National Laboratory)
Future Experiments: Parallel Sessions 3
- Salvatore Fazio (Brookhaven National Laboratory)
- Daniel Britzger (Max-Planck-Institut für Physik München)
- Markus Diefenthaler (Jefferson Lab)
Future Experiments: Parallel Sessions 3
- Markus Diefenthaler (Jefferson Lab)
- Daniel Britzger (Max-Planck-Institut für Physik München)
- Salvatore Fazio (Brookhaven National Laboratory)
Future Experiments: Parallel Sessions 4
- Markus Diefenthaler (Jefferson Lab)
- Daniel Britzger (Max-Planck-Institut für Physik München)
- Salvatore Fazio (Brookhaven National Laboratory)
Future Experiments: Parallel Sessions 5
- Salvatore Fazio (Brookhaven National Laboratory)
- Daniel Britzger (Max-Planck-Institut für Physik München)
- Markus Diefenthaler (Jefferson Lab)
Future Experiments: Parallel Sessions 5
- Daniel Britzger (Max-Planck-Institut für Physik München)
- Salvatore Fazio (Brookhaven National Laboratory)
- Markus Diefenthaler (Jefferson Lab)
Future Experiments
- Daniel Britzger (Max-Planck-Institut für Physik München)
- Salvatore Fazio (Brookhaven National Laboratory)
- Markus Diefenthaler (Jefferson Lab)
The presentation will cover breakthroughs in detector technology in accelerator based and non-accelerator based particle physics experiments and facilities.
The Electron-Ion Collider (EIC) is a new, innovative, large-scale particle accelerator to be built at Brookhaven National Lab in the USA over the next 10 years. It will collide beams of polarized electrons with polarized beams of light ions, or with heavy ions, at high luminosity. The goal is to study the fundamental structure of nucleons and nuclei, and the theory of Quantum Chromodynamics...
The realisation of the LHeC and the FCC-eh at CERN require the development of the energy recovering technique in multipass mode and for large currents ${\mathcal O}(10)$ mA in the SRF cavities. For this purpose, a technology development facility, PERLE, is under design to be built at IJCLab Orsay, which has the key LHeC ERL parameters, in terms of configuration, source, current, frequency and...
We present predictions and projections for hadron-in-jet measurements and electron-jet azimuthal correlations at the future Electron-Ion Collider. These observables directly probe the quark transversity and Sivers parton distributions, the Collins fragmentation functions, and TMD evolution. This jet-based approach will allow us to avoid the convolution of TMD parton distributions and...
The SPD (Spin Physics Detector) facility is meant to be a universal 4π detector at the new collider complex NICA at the Joint Institute for Nuclear Research (JINR, Russia). The main goal of the experiment is to study the polarized gluon structure of proton and deuteron in the production of charmonium, open charm and direct photons. At its initial stage, SPD will also focus on various...
The LHeC and the FCC-eh offer fascinating, unique possibilities for discovering BSM physics in DIS, both due to their large centre-of-mass energies and high luminosities. In this talk we will review most recent studies as presented in the 2020 LHeC Conceptual Design Report update [1]. We will show the prospects for observing extensions of the Higgs sectors both with charged and neutral...
The sPHENIX detector currently under construction at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) is designed to significantly advance studies of the microscopic nature of the Quark Gluon Plasma. With a multi-year physics program beginning in 2023, sPHENIX employs state-of-the art detector technologies and will fully exploit the highest planned RHIC luminosities. ...
The STAR forward upgrade consisting of new tracking and electromagnetic and hadronic calorimeter systems covering a pseudorapidity range of 2.5-4.5 will start data taking in autumn 2021. A core motivation is the exploration of the structure of nuclei at very high and low regions of Bjorken x. The forward upgrade also provides new detector capabilities at RHIC and STAR to explore the...
Jet production and jet substructure in reactions with nuclei at future electron ion colliders will play a preeminent role in the exploration of nuclear structure and the evolution of parton showers in strongly-interacting matter. In the framework of soft-collinear effective theory, generalized to include in-medium interactions, we present the first theoretical study of inclusive jet cross...
The LHeC and the FCC-eh will open a new realm in our understanding of nuclear structure and the dynamics in processes involving nuclei, in an unexplored kinematic domain. In this talk we will review the most recent studies as shown in the update of the 2012 CDR [1]. We will discuss the determination of nuclear parton densities in the framework of global fits and for a single nucleus. Then we...
The recent exclusive backward-angle electroproduction of omega from Jefferson Lab Hall C electron-proton fixed-target scattering experiments above the resonance region, published in the PRL, hints on a new domain of applicability of QCD factorization in a unique u-channel kinematics regime. Thanks this pioneering effort, the interests of studying nucleon structure through u-channel meson...
Nuclear dynamics at short distances among nucleons is one of the most outstanding phenomena in nuclear physics. Understanding the role of QCD in generating nuclear forces is important for uncovering the underlying physics of Short-Range Correlations (SRCs). In recent years, SRCs has been observed from light to heavy nuclei using fixed target experiments at Jefferson lab via high energy...
The CLAS12 detector at Jefferson Lab produced the first results in SIDIS and DI-HADRON reactions. Making use of the CEBAF high energy (up to 11 GeV) and highly longitudinal polartized (up to 90%) electron beam will cover unexplored territories in electron-scattering physics. Exclusive reactions on nuclons and nuclei will be measured with high precision in high luminosity (up to 10e35 cm-2s-1)...
SoLID spectrometer was proposed to fully exploit the potential of JLab 12 GeV energy upgrade. It is a large acceptance detector which can handle very high luminosity. An overview of the rich physics program will be given, which includes number of planned measurements: a multi-dimensional mapping of semi-inclusive DIS asymmetries for tomography of the nucleon in momentum space in the high-x...
The goal of LHCspin is to develop, in the next few years, innovative solutions and cutting-edge technologies to access spin physics in high-energy polarized fixed-target collisions, by exploring a unique kinematic regime given by the LHC beam and by exploiting new probes.
This ambitious task poses its basis on the recent installation of SMOG2, the unpolarized gas target in front of the LHCb...
Investigations of coherent production background and eA collision geometry using forward particles at the EIC
Wan Chang
Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
and Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA
changwan@mails.ccnu.edu.cn
The Electron-Ion Collider (EIC) is a next generation accelerator which will...
The SpinQuest (Fermilab E1039) experiment intends to perform the first high statistics measurement of the sea-quarks Sivers asymmetry. Specifically, the primary focus of the experiment is to utilize proton induced polarized Drell-Yan production of di-muon pairs to extract the sign and magnitude of the anti-u and anti-d quark Sivers functions. A nonzero asymmetry would present strong evidence...
A multi-TeV muon collider is a discovery machine and an invaluable tool for many precision measurements such as the shape of the Higgs boson potential. The update of the European Strategy for Particle Physics recognized the unique opportunity of a muon collider to reach the energy frontier, despite the challenges to produce intense cooled muon beams. A 3 TeV and a 10+ TeV collider option is...
The Belle II experiment at the SuperKEKB energy-asymmetric $e^+ e^-$ collider is a substantial upgrade of the B factory facility at the Japanese KEK laboratory. The design luminosity of the machine is $8\times 10^{35}$ cm$^{-2}$s$^{-1}$ and the Belle II experiment aims to record 50 ab$^{-1}$ of data, a factor of 50 more than its predecessor. With this data set, Belle II will be able to measure...
The LHeC and the FCC-eh are the cleanest, high resolution microscopes that the world can build in the nearer future. Through a combination of neutral and charged currents and heavy quark tagging, they will unfold the parton structure of the proton with full flavour decomposition and unprecedented precision. In this talk we will present the most recent studies on the determination of proton...
The proposed high luminosity high energy Electron Ion Collider (EIC) will explore the proton/nuclear structure, search for gluon saturation and precisely determine the nuclear parton distribution functions (nPDFs) in a wide x-$Q^{2}$ phase space. Heavy flavor and jet measurements at the future EIC will allow us to better constrain the nPDFs within the poorly constrained high Bjorken-x region,...
Generalised parton distributions are a key tool to study the three-dimensional structure of the nucleon. They shed light on its spin structure and energy-momentum tensor properties, and motivate numerous experimental programs involving hard exclusive experiments. Based on a next-to-leading order analysis, we exhibit non-trivial generalised parton distributions with arbitrarily small imprints...
In this talk the current status and plans are presented on the LHeC,
towards the new HEP strategy update in about 5 years time, on physics,
with emphasis on the eh-hh relation, on the machine, especially the IR,
and further detector developments. The talk also covers FCC-eh and refers
to a separate presentation of the ERL facility PERLE. It is based on the
comprehensive CDR update which...
The LUXE experiment (LASER Und XFEL Experiment) is a new experiment in planning at DESY Hamburg using the electron beam of the European XFEL. LUXE is intended to study collisions between a high-intensity optical LASER and 16.5 GeV electrons from the XFEL electron beam, as well as collisions between the optical LASER and high-energy secondary photons. The physics objective of LUXE are processes...
The data on tau neutrino is very scarce, only a few experiments have detected its interactions. At FNAL beam dump experiment DONUT, tau neutrino interaction cross-section was directly measured with a large systematical (~50%) and statistical (~30%) errors. The main source of systematical error is due to a poor knowledge of the tau neutrino flux. The effective way for tau neutrino production is...
Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under...
In the spin-1 deuteron, there are additional polarized structure functions which do not exist in the spin-1/2 nucleons. Especially, the gluon transversity appears as a new distribution in the deuteron. We proposed to investigate the gluon transversity distribution at hadron accelerator facilities [1]. Although there was recent experimental progress on quark transversity distributions, there is...
The constituents of dark matter are still unknown, and the viable possibilities span a very large mass range. Specific scenarios for the origin of dark matter sharpen the focus on a narrower range of masses: the natural scenario where dark matter originates from thermal contact with familiar matter in the early Universe requires the DM mass to lie within about an MeV to 100 TeV. Considerable...
The ALICE experiment is upgraded for LHC Run 3 in order to profit from the increase in luminosity in particular for the heavy ion data taking with an expected interaction and readout rate of 50 kHz, and to improve on the tracking resolution. The upgrades comprise replacing the Inner Tracking System with a new silicon tracker using MAPS technology, including a new tracking system in the forward...
The High-Luminosity Large Hadron Collider (HL-LHC) is expected to deliver up to 3000 fb-1 of proton-proton collisions at 14 TeV center-of-mass energy. The CMS detector will undergo significant upgrades for HL-LHC operations. We will present prospects for selected Standard Model and Higgs sector measurements with the CMS detector at the HL-LHC, and discuss potential sensitivity to several...
The LHeC provides a comprehensive physics programme with strong implications on that of the HL-LHC. We will present a chapter of the 2020 LHeC Conceptual Design Report update [1], that is firstly the implications of the precise determination of proton PDFs at the LHeC on the measurement of key SM parameters at the HL-LHC: EW mixing angle, W mass and their impact on EW precision measurements....
The large dataset of about 3 ab-1 that will be collected at the High Luminosity LHC (HL-LHC) will be used to measure Higgs boson processes in detail. Studies based on current analyses have been carried out to understand the expected precision and limitations of these measurements. The large dataset will also allow for better sensitivity to di-Higgs processes and the Higgs boson self coupling....
The electron-ion bremsstrahlung will serve for a fast and precise luminosity measurement at the EIC. This process however, due to its long-range nature, has very unique properties which need to be carefully studied [1]. In particular, at high energies it involves the so-called beam-size effect which will be significantly amplified at the EIC. In addition, large fluxes of the coherent...
The next data-taking campaign RUN-III will double the integrated luminosity the LHC accumulated in 10 years of operation. The Run-III will be the herald of the HL-LHC era, an era when 90% of total LHC integrated luminosity (4 ab-1) will be accumulated allowing ATLAS to perform several precision measurements to constrain the Standard Model Theory (SM) in yet unexplored phase-spaces and in...
The LHCb detector is currently being upgraded to be able to take data at higher luminosities and with greater efficiency in Run3. This involves replacement of many subdetector systems, including the vertex detector, upstream tracker, the photodetectors of the ring-imaging Cherenkov detectors, and the downstream tracker. Equally important will be a complete redesign of the data-acquisition...
We present an impact study of the upcoming Electron-Ion collider pseudo-data on unpolarized proton and nuclear Parton Distribution Functions (PDFs). The pseudo-data consists of inclusive cross sections for lepton-proton and lepton-nucleus Deep-Inelastic Scattering (DIS). We perform a sequential global analysis, whereby we start by fitting the proton PDFs which then we use as a baseline to fit...
We present an impact study of future EIC measurements on our knowledge of PDFs, using the JAM Monte Carlo global QCD analysis framework. We study the effect of EIC pseudo-data for polarization asymmetries on quark and gluon helicity distributions in the proton. An overview of the impact of future inclusive DIS and parity-violating DIS data on unpolarized PDFs is also shown.
We study the use of machine learning (ML) for deep inelastic scattering (DIS) measurements. In particular, we train deep neural networks to reconstruct the scaling variables $x$ and $Q^2$ from the lepton and the hadronic system in ep scattering at the ZEUS experiment at HERA. These models are trained by a careful selection of Monte Carlo events. The results from the deep neural networks (DNN)...
The future Measurement of a Lepton-Lepton Exclusive Reaction (MOLLER) experiment will run at Jefferson Lab in Hall A. MOLLER will make an ultra-precise measurement of the weak charge of the electron, 5x more precise than E158 and with an uncertainty on the weak mixing angle that is on par with the two collider measurements at the Z-pole. The parity-violating asymmetry in the scattering of...
In the context of the Physics Beyond Colliders Study, various new experiments have been proposed for the EHN2 beamline at the CERN North Area. The experiments include MUonE, NA64µ and the successor to the COMPASS experiment, tentatively named AMBER. The AMBER collaboration proposes to build a QCD facility requiring conventional muon and hadron beams for runs up to 2024 in a first phase of the...
We study the polarization of $J/\psi$ mesons produced in semi-inclusive, deep-inelastic electron-proton scattering in different reference frames at the EIC energies. At low transverse momentum, we propose factorized expressions in terms of transverse momentum dependent gluon distributions and shape functions. In particular, we show that the distribution of linearly polarized gluons can, in...
Charged current events in an exclusive electroproduction process have not been much discussed up to now. The reason is simple as the smallness of the weak coupling prevents exclusive cross-sections from being large enough to allow sufficient counting rates at existing electron-nucleon facilities.The very high luminosity anticipated at planned high energy electron ion colliders should open...
We describe the status of the ATLAS Forward Proton Detectors (AFP and ALFA) for LHC Run 3. The expected performance of the Tracking and Time-of-Flight Detectors, the electronics, the trigger, and the readout and detector control and data quality monitoring are described in some detail. Finally, the physics interest and the beam optics and detector options for participation at the HL-LHC are discussed.